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':‘ In this thesis, results of a study of the heuristic random search optimization method called
g simulated annealing are given. Most of the results are concemned with the average amount of time
3 simulated annealing takes to find an acceptable solution.

: %&. We analyzed the average time complexity of simulated annealing for the matching problem.

Although the matching problem has worst-case polynomial time complexity, we show that there is

a sequence of graphs where the average time complexity of a "natural” version of simulated

Farar oA
e

annealing is at least exponential. In contrast, we show that the "natural” version of simulated
" annealing has a worst-case polynomial average time complexity if it is only required to find "near”
o :; maximum matchings. An exponential lower bound on the minimum average time complexity over
a wide class of simulated annealing algorithms when our attention is restricted to constant tempera-

ot ture schedules is also given.

o
2

The typical case for simulated annealing for the matching problem is also analyzed. Since we

& o
E 4

were not able to discover a method to exactly analyze the average time complexity of simulated

LA |

o annealing for the matching problem for "typical” graphs, we used approximations to estimate the

average time complexity and then checked the accuracy of the approximation with data from com-

e

W puter simulations. Our results indicate that if we only consider graphs that have at least as many

"

‘f\, edges as they have nodes then the average time complexity of simulated annealing for a typical

N~ graph with n nodes is O(n).

'

A technique for producing easy-to-analyze annealing processes, called the template method, is

‘
R
:i.‘ given. It is our hope that this method will producc interesting examples of simulated annealing
i1 " e
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that will help us to understand the heuristic. We provide two examples of using the template
method to analyze the finite-time behavior of simulated annealing as a function of the temperature
schedule. A generalization of simulated annealing, which we refer to as the threshold random
search algorithm, is presented. We also give conditions under which no monotone decreasing tem-

perature schedule is optimal.

Finally, we discuss the use of quadratic penalty methods in conjunction with simulated
i-...aling 1o solve problems with equality constraints. An experimental evaluation is made
between adaptive and static quadratic penalty methods, and it is shown that adaptive quadratic
penalty methods can provide low-valued solutions over a wider range of penalty parameter values

than static quadratic penalty methods.
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CHAPTER 1

INTRODUCTION

Simulated annealing is a heuristic random search technique, introduced independently by
Kirkpatrick et al. [1] and éemy [2], for finding approximate solutions to combinatorial optimiza-
tion problems. It is a variation of the local improvement technique in which an initial solution is
repeatedly improved by perturbing it until it reaches a "local minimum," i.e., a solution where no
improvement is possible by perturbing it. A drawback of the local improvement method is that the
search may terminate in poor local minima. Simulated annealing tries to avoid getting stuck in
poor local minima by randomly accepting some perturbations that worsen the solution as well as

accepting all perturbations that improve it.

Simulated annealing has many of the attractions of the local improvement method, such as
the relative ease of implementation on new problems and the modest amounts of memory usually
required by these implementations. Since simulated annealing is a simple heuristic method, it has
been applied to solve a variety of problems, such as generating error-correcting codes [3], restoring
images automatically {4], and designing VLSI circuits automatically [1], and since simulated
annealing typically requires only a modest amount of memory, it has usually been applied to solve
problems with many variables. Empirical results show that simulated annealing will usually find a

better solution than the local improvement method, but at a cost of a longer run time.

With these properties, simulated annealing has been and will be applied to find approximate
solutions to many useful problems. Hence, it is important to analyze the performance of simulated

annealing and identify important parameters that govern that performance. For the remainder of

this introduction we will precisely describe a simulated annealing algorithm applied to solving a
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- generic combinatorial optimization probiem, briefly review some of the directions of past
X
C‘
h theoretical research, and discuss the organization of this thesis.
ah
OV Suppose we want to solve the generic combinatorial optimization problem
W min{c(s): s€ S},
.;i‘: where S is a finite set and c is a cost function ¢: S—R. In addition, suppose we have a transition
&
probability matrix R over S and a sequence (Ty: k 2 0) (called the temperature schedule ) of posi-
R
w2 tive extended real valued numbers. Typically, the temperature schedule is monotone decreasing to
:nj zero. A state s is referred to as a neighbor of s’ if Ry, > 0. A simulated annealing algorithm
Y
® applied to this problem constructs a sequence (X,: k 2 0) of states in the following way. An initial
Vg
_: state X, is chosen. Given X, = s, a potential next state Y, is chosen with probability distribution
K, .
!.’! P[Y, = §'|X, = 5] = R,
™~ Then we set
5
L\, Y, if c(Yy) S c(s)
o X1 = { Y. with probability py if c(Yy) > c(s)
:.g Xy otherwise,
g where
e
DR -max{c(Y,) - ¢(s),0)
Px = €xp
oA g Tk
, :: This specifies how the sequence (X;: k 2 0) is chosen. The random process (X,: k 2 0) produced
2 by the algorithm is a discrete time Markov chain, and we will call it the annealing process on sys-
3 tem (S, ¢, R) and with temperature schedule (T}: k 2 0).
Y ."‘
v
’: For some specified time K (which is possibly a random time), the algorithm retumns Xg. If
&t
* the amount of memory permits, the algorithm can be modified to return the lowest valued member
"::;, of {Xy Xi...., Xg} rather than Xg. Note that if the temperature schedule is identically equal to
\':3:
;::A zero then the simulated annealing algorithm is a local improvement algorithm.

I‘\-p
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-~ a We now briefly review some directions of past theoretical research on simulated annealing.
? One of the popular directions of theoretical research on simulated annealing is to determine condi-
" -,

“
P‘, 3 tions on the transition probability matrix R and the temperature schedule (T,: k 2 0) so that

lim P[X, e S"} =1,
k—too
where S” is the subset of states of S that have minimal cost. The results of this type lead to

insights on the dynamics of the annealing process.

o s A

Another direction of theoretical research is to analyze the finite time behavior of the anneal-

a ing process. We will give short descriptions of three results of such analysis. The first result, by

| o

Mitra et al. {S], is an upper bound on the distance between the state probability vector of X; and a

‘ ';] probability vector (r,: s € S) such that ¥ x, = 1. The following is a simple corollary to their
3 > S’
. sult. S the temperature schedule (Ty: k 2 0) is such that T, = L k21,
( a resu uppose the temperature dule (Ty ) is suc " gk + Ko+ 1) kg
3 - and y 2 rL,, where r is the radius of the graph underlying the annealing process (X,: k 2 0) and L

e

"SR

is a Lipschitz-like constant of the cost function. Then, for a large number of iterations k,

T P(X, =s] - x,| = O(1/k™n{ably
€S

25

o vIl

where a and b respectively increase and decrease with increasing v.

ey

g The second result, by Gelfand and Mitter [6], is a lower bound for
i
My

P[X; e S™: for some j S k]. If the temperature schedule (Ty: k 2 0) is such that exp(-1/Ty) = kT

ELIVLEL R Vs

'c_, “,'._ and T is large enough, then this lower bound converges exponentially fast to zero. However, if T
2, is sufficiently small, the bound converges to a strictly positive number.
- .
"‘ ™ The third result, which is a corollary to a result by Lundy and Mees (7], is an upper bound
" & on E[min(k: X, € S°}], and is derived in the following way. Let ¢’ = min{c(s): €S}. Suppose
S ¢ for some positive r there are positive scalars a and ¥ such that for all j 2 0,
i v

e A T T 4 T T O D R
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Sl CXje) — (XD < ¥
W and
L
5 »
o E[C(x)”) - c(X))lc(X) >C ] < .
!‘%" A trivial extension of Wald's equation [8] yields
2w . c -Cc +
ey E[min{k: X; € §$'}]1 < Xo) fY.
.» _.;: a
W However, Lundy and Mees do not indicate how to find values of ¢ and r.
R Besides trivial examples, most theoretical results on the finite-time behavior of the annealing
B -"" :)
" 52-_{ process have been derived without much consideration of typical applications of simulated anneal-
A
% ing. Therefore, the bounds of these results may be very loose if they are directly applied to a par-
*‘ ticular application. In Chapters 2 and 3, we analyze simulated annealing for a particular nontrivial
e
[ :3 Y
1:::?;?, problem, the matching problem. Upper and lower bounds on the average time it takes a simulated
g. annealing algorithm to find a solution of the matching problem are presented in Chapter 2. These
'\.}"
A bounds are worst-case bounds over all instances of the problem of a specified size. In Chapter 3,
oS

we attempt to determine the average length of time a simulated annealing algorithm takes to find a

e solution to the matching problem for a "typical” instance. The results of Chapter 3 are based on
> g P
o
'.\-' . . - . 3 13
W approximations, and these approximations are checked for accuracy by comparing them to with
':s‘
v data from computer simulations.
.r‘;::j In Chapter 4, we present a collection of results. A simple technique to cook up easy-to-
I
J.-,' - . -
::-f-j- analyze annealing processes is given in Section 4.2. It is our hope that interesting annealing
-~
. processes that will help us to better understand simulated annealing will be produced by this
T,
;1':; method. In Section 4.3, we present a random search heuristic, called the threshold search algo-
v,
7 - rithm, that is a generalization of simulated annealing. In Section 4.4, conditions are given that
¢\ insure that no monotone decreasing temperature schedules are optimal.
S
Wiy
o
3%
d,
A
B
g
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In Chapter S, we consider using simulated annealing to solve problems that have equality

constraints. A technique used to solve problems with equality constraints is the quadratic penalty

method, which transforms an equality constrained problem into an unconstrained problem. Simu-

e

lated annealing can then be used to solve the transformed problem. The method of multipliers is

S

A~ an adaptive quadratic penalty method, and through experiments we compare this method, and a

-~ variation of this method, with the quadratic penalty method.

= Finally, we summarize the results of this thesis and provide possible directions for future

! research in Chapter 6.
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. CHAPTER 2
A
,~’
‘ }_; MATCHING PROBLEM: AVERAGE PERFORMANCE FOR WORST-CASE GRAPHS
:::a"
A
W 2.1. Introduction
1
:f.: The introduction of this chapter is divided into four subsections. The motivation of the
!'.‘
bt results of the chapter is provided in Subsection 2.1.1. Subsection 2.1.2 contains the basic simu-
o
,:," lated annealing algorithm for the matching problem that is analyzed in Subsection 2.1.3, Sections
e
-‘: e 2.2 and 2.3. In Subsection 2.1.3, a convergence in probability result of the basic simulated anneal-
R
: ing algorithm in Subsection 2.1.2 is given. Finally, an organization of the rest of the chapter is
M\
’r}j presented in Subsection 2.1.4.
>
e
B~y
o 2.1.1. Motivation
.
: In this chapter, we consider simulated annealing applied to maximum matching, a fundamen-
%
- tal problem in combinatorial optimization. An instance of the maximum matching problem is a
'é\‘,‘!,
.)_ simple graph G = (V,E), where V denotes the set of nodes of G and E denotes the set of
it )
:' 2 (undirected) edges of G. A matching M in G is a subset of E such that no two edges in M share a
)
:.;, node. The maximum matching problem, for instance G, is to find a matching in G with maximum
;ﬁ’.‘, cardinality.
§:‘ The maximum matching problem is easy in the sense that there is a known deterministic
10
S algorithm which solves the problem in O(N]V]|E|) steps (see [9]), where |V| is the cardinality of
'_fj-: V. However, we do not consider maximum matching to be trivial, since the deterministic algo-
Vit
| E“tj rithm is somewhat subtle.
1 4
o
g'(‘.'ﬂ
o
g‘t:."
'f.:al
s
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2.1.2. The basic simulated annealing algorithm for maximum matching

.

We will here describe what is perhaps the most obvious way to apply simulated annealing to

.
]

e e

..
search for the maximum matching of a graph G = (V,E). Let T,, T,, . . . be a nonincreasing tem-
;: g perature schedule. We say that an edge e is marchable rclative to a matching M if ¢ ¢ M and if
L
’:?. » M+e is a matching (here M+e is our notation for M U (e}, which we use only if ¢ ¢ M). Let
f!: ) Q(M) denote the set of matchable edges relative to matching M.
|i F‘ To begin the algorithm, choose an arbitrary matching X, in G -- for example, X, could be
- the empty set ©. Having selected Xy, X|, . . . , X, choose X;,; as follows. Choose an edge ¢ at
"l
L} :
{ & random, all edges in E being equally likely.
,»‘ ":
- i If e is matchable relative to X let X, = X +e.
) ﬂ X, - ¢ with probability exp(-1/Ty)
‘1'6 Ifee Xk, let Xk,,l =
." - Xy  with probability 1 - exp(=1/T}).
K 3

> -
4

Else, let xk+| = Xk'

Note that (X,: k 2 0) is an annealing process on system (S, ¢, R), where S is the set of all match-

X A
K]

S
258

ings, c(s) is the negative of the cardinality of s, and R is a transition probability matrix over S such

- -
-

that

-
-

Y 1

g';' |E| i#jand i@l =1

. ;3‘.3 Rj= {0 li®j| > 1

= 1-YR, i=j.

- k=

J-v :".: .

b 2.13. Convergence in probability

NS

v ..

- é We begin by giving some standard notation [10]. Given a matching M in G, a node v is

:& ) exposed if no edge in M is incident to v. A path p in G is a sequence of nodes p =
2

5]t [ViVe. . ...Vv,]). where k 2 1, the nodes v,.vy ...,v, are distinct. and [v,v,,]e€ E for

5
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1 SisSk-1. The length of such a path is k-1. The path is augmenang for M if its length is odd
(so k is even), if v, and v, are exposed, and if {v,v,,,] € M for even values of i with 2 S i < k-2.
A well-known result of Berge and Norman and Rabin is that a mawching M does not have max-

imum cardinality if and only if there exists an augmenting path for M {10, Theorem 10.1].
Let My be a matching which does not have maximum cardinality, and let [v, va, . . ., vy be

an augmenting path for M,. Starting from M, it is possible for the basic simulated annealing

algorithm to reach a higher cardinality matching by passing through the sequence of matchings

‘\"ll, M:‘ e Ml-l givcn by

Ml = Mo - [Vz, V3] MI = M| + [V‘.Vzl

My =M, - [vq, vl Mi=M; + [vyvy]

My =M - V2] Mz = My3 + [Veavial
and finallv

Mo = My + (vl
The matchings in the sequence have cardinality at least as large as t.e cardinality of My minus
one. In the terminology of [11], the depths of the Jocal maxima for the matching problem are at
most one. The following theorem is thus an immediate consequence of [11, Theorem 1]. A
matching M is said to be maximal if no edge is maichable relative to M. Let S* denote the set of

matchings with maximum cardinality.
Theorem 2.1 1 Let G = (V.E) be a graph with a nonempty set of edges E. If all maximal

matchings of G are in S° then

lim P(X, € %=1 if and only if lim exp(~1/Ty) =0

If some maximal matching is not in S then




.

2
.l
w

l‘ljm P{X; € S°) =1 if and only if l‘lim exp(-1/T)=0 and ¥ exp(=1/T,) = +oe.

:3: o Theorem 2.1.1 gives a large-time asymptotic result for each fixed instance G, and the condi-
":::‘ ™ tions do not depend on the size of G. In contrast, our goal in this paper is 10 give asymptotic
;b ? results as |V| tends to infinity. Interesting, general work on the analysis of simulated annealing
'!‘:‘ ;:, run for a finite number of iterations has appeared (sce [S], (12], and [6]. for example). However,
R .

R thc general theory does not determine, for example, whether simulated annealing exactly (or
':.E‘:"‘ g nearly) solves the maximum matching problem in an amount of time growing as a polynomial in
::':E‘, g |V]. Moreover, it is not clear yet that any general theory could answer such questions. In this
W

5 chapter, we present results that we would like to see established more generally.
ST
:f- p 2.1.4. Organization of the chapter
%
‘ : i In Section 2.2, we show that for a certain family of graphs the basic annealing algorithm, or
?:f . any other algonthm in a fairly large related class, cannor find maximum cardinality matchings
::; using average time that is upper bounded by a polynomial in |V|. In contrast, we show, in Sec-
‘, ) % uon 2.3, that a degenerate form of the basic simulated annealing algorithm (obtained by letting T,

;:"- ‘ be a suitably chosen constant, independent of k) produces matchings with nearly maximum cardi-
;‘. "?‘. nality using average time that is upper bounded by a polynomial in |V|. Sections 2.2 and 2.3 can
. o? re read independently. In Section 2.4, we present a lower bound on the average time simulated
‘ :? ” annealing takes to find nearly maximum cardinality matchings when the temperature schedule is

: ; restricted to be of constant value.

»‘ :: 2.2. The Impossibility of Maximum Matching in Polynomial Average Time Using Certain
;‘:: Simulated Annealing Type Algorithms

X ‘e
‘: 5 Cenain local search algorithms for the maximum maiching problem wil! be considered in this
:E scction. The algonthms will not be restncted much in an attempt (0 include several implementa-
::: ) uons of simulated annealing. Both the basic simulated annealing algonthm (given in Subsecton




~l
.
e 1
“ ‘
.
2.1.2), when X, = ©, and a panicular multistant-descent algonthm will be included. Nevertheless,
.
oo it will be proved that the algorithms cannot reach a maximum matching in average ume bounded
R <
L by a polynomial in |V|, for a particular family of graphs.
i
:ﬂ First, we allow the "temperature” 10 depend on both time and the current and past states of
"'$ the algorithm. Second, we assume that the type of each move can be specified from among the
\.
‘ three possibilities whenever they exist: addition of an edge, deletion of an edge, no change. The
‘, j‘,: key restriction we do impose is that given the type of a move, the location of the edge to be added
~
o
“~
.7-: or deleted is uniformly distributed over the possible locations.
»
g'
We thus view the sequencz X, X,... of states genecrated by the algorithm as a controlled
:'-',:; Markov process. Suppose that "controls” a, and d, are given such that for each (,
Al
o C.1. a.d, a +d, e [0.1] with probability one, and a, and d, are functions of (Xo. . . .. X,).
. _
s :". r
LS -a -
:_ 1-a-4d ifM=M
o d,/ M| ifee Mand M’ = M—¢
K
N C2 PXuy=MI|X,=M X_..... Xo] = 9
o 3/IQM)|  ifee QM) and M" = M+e
, 0 if [IMO@M’| 22,
..’ \
-
:’ where M3M’ denotes the symmetnc difference of M and M’ (recall that Q(M) is the set of edges
matchable relative to M).
-vf
-.:: Clearly. if we choose the controls appropnately we can use this controlled Markov process 10
NI
S
*-‘,’j mimic the basic simulated annealing process of Subsectior 2.1.2. We can also control the Markov
- process 10 mimic a multistant-descent algonthm (although only at half speed). To do thus we
0.
:: assume that X =0, We then let 3 =1 for 0 S t < S, where S, 15 the first ume that 3 maximal
/G
) matching 1s reached Then we let d, =1 for S; S t < 2S,, which guarantees that X, = O for
04
fc"
s
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e 11
s <.
.|\‘\
. t=2S,. We then keep repeating this process.

L)
]
;;" " The family of graphs we will focus on is (G, G;, Gy, . . .}, where G, = (V.E),
wr ':_.
D
V={uslsijsml}ufvy 1S4, jsS ],

el n
2 E=HUB. H=uU H, B=u B,
N J )
c: . i j ol
‘;1' “ H = ((u,.v,): 1S1Snel}  for)such that | S S n+l,
X and
b , ‘ , _
" :.j B, = {[v, U] 1 S ik S n+l) forjsuchthat 1 € jsn
v g Graph G, 1s a bipartite graph with 2(n+1)? nodes and (n+1)® edges. For each j, the subgraph of G,
L3NS
induced by the nodes of edges of B, is a complete bipartite graph, and the subgraph of G, induced

::' by H, consists of n+1 disjoint edges. The set of edges H is a matching, and it is maximum since it
o ' leaves no nodes exposed. In addiuon, there are no other maximum matchings since, by induction,
1 any maichung whuch has no nodes exposed must include the edges in Hy, Hy, . . ., H,,;. As an
:‘:' >,
0 1’3 example. G, 1s sketched in Figure 2.2.1.
o“‘

) . The main result of this section is the following theorem.
o
wi Theorem 2 21 There exist positive constants 6, and G, such ... the following is true. For
A
i any n 2 1. let (X.a,d) be a controlled process for finding the maximum matching of G, satisfying
2l condiions C.1 and C.2. Define R® by
,~ C T,
Y R* = min(k: X, is a maximum matching}.
' C N
o, Then
' ;' E[R® | Xy = @j 2 oyexp(0an).

4
"
e -
- : In the proof of Theorem 2.2.1, a funcuon g(M) is used to measure the distance from a maich-
oo
N
> ;. ing M to the unique maximum matching H. We will present the functon g after defining some of
I.‘ ..
h:fg - is components  Let Vo(M) = U (M) =0. For all j, such that 1 S j S n+l. let UM (resp.,
@
§ -
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VM) be the number of nodes in {u;: 1 Si S n+l) (resp., {vi 1 S1i<n+l}) that are exposed

relative to M. The function g is such that, for a matching M,

gM) =c[BAM| + T w(V;(M), U (MD),
=l

where ¢ = 18,

y(xy) = 2 min{x.y} + {04508y}

and I , is the indicator function. Note that g(M) includes the term |BAM| and a second term
which is related to the set of edges in B that are matchable relative to M. Some trivial properties

of g are that g is nonnegative, g(H) = 0, and g(J) = 2n(n+1).

The next set of lemmas and definitions is used to show that (g(X;): k 2 0) tends to drift away
from zero (and hence (X,: k 2 0) drifts away from H) when (g(X,): k 2 0) is below a certain
threshold (see Equation (2.2.3), p. 18). After the lemmas and definitions the proof of Theorem

2.2.1 is presented.

Lemma 2.2.1 Suppose x,y 2 0. Then

e {1.2,3} if y 2 max{x,1}
(@) w(x+l,y) — w(x.y)
=0 otherwise,

€ {1.23) if x 2 max{y,1)
() w(x, y+1) — w(x.y)
= (; otherwise,

(c) wix+l, y+1) - y(x.y) € {2.3}.
Proof Easy by inspection of Table 2.2.1.
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KXY Table 2.2.1. Values of y(x,y).

hyt Lemma 2.2.2: Let M be a matching of G,
> (a) Suppose ¢ € MNH;. Then g(M-¢) - gM) > 0 if and only if

B b)) gM-e)y-gMe (0,1,....6} foree MnH.

, (c) gM—e)-gM)e (<+2, c+3) fore e M N B.
™, Proof- It is easy 10 see that, fore € M N H;,

gM—€) - gM) = WV, (M), UM) + 1) = WV, (M), UM))

+ WV,(M) + 1, Upyy (M) = w(V;M), Uy (M),
A and, foree M N B,
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gM—¢) - gM) = = ¢ + W(V;M) + 1, Uj,y(M) + 1) = y(V;M), Uj,. (M)).

Note that Lemma 2.2.2 can be easily deduced from these equations and Lemma 2.2.1.

-,
Seh

o

»
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we T A RY
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i o
-“ ©
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G))
2

For each matching M of G,, define

A(M) = {e is matchable relative to M and gM+e) # gM)},

DM) = (e € M: gM-¢) = g(M)},

AM) = (e e AM): gM+e) > gM)}, A M) = (e e AM): g(M+¢) < gM)},
D,M) = {e € DM): gM-¢) > gM)}, D_M) = {e € D(M): g(M-e) < gM)}.

Lemma 2.2.3: Let M be a matching of G, and let 0<d<1. Then

D,(M) € MnH, D.M)=MnB, A(M) cHM, AM) =BnQM),
lA.(M)| < 2]A.M),
ID.M)| < nd if g(M) < ncd,

ID.(M)| 2 n(1 - 5(-% +1)) if 0<gM) < ncb.

Proof: Part (a) is a consequence of parts (b) and (c) of Lemma 2.2.2 and the fact that ¢ > 3.

We will now prove the following two facts, which imply part (b): every edge in A_(M) has a

" node in common with an edge in A,(M) and for every edge in A, (M) there are at most two edges
“: in A_(M) that have nodes in common with it. Let e € A_(M). Then e € H; for some j by pan
[

o>

(a). and moreover at least one of V. (M) or U, (M) is strictly positive by part (a) of Lemma

.-
e 2.2.2. Thus, there is at least one edge e’ in B, ,UB; which is matchable relative to M and has a

node in common with e. Then ¢’ is in A,(M) and hence we can conclude that every edge in

A_(M) has a node in common with an edge in A,(M). On the other hand, part (a) implies

. v . 1 0 \S A A T e e
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A_M)cH A,(M) c B, and therefore for every edge in A (M) there are at most two edges in

A_(M) that have nodes in common with it. Part (b) is proved.
By parn (a)

|ID_(M)| S |BAM| < gM)/c < n$,
which proves part (¢).

We now prove part (d), which will complete the proof of Lemma 2.2.3. Let M be a match-
ing with 0 < gM) < ncd. The fact that g(M) > O implies that M is not equal to the unique max-
imum matching H, which in tum implies that there exists at least one exposed node. Since g(M) <
nc, M contains fewer than n edges from B;UB,u - - - UB,. Hence MNB, = & for some k. Now,

the set of nodes
Z={vij1<sisnt]l, 1SjSk} U {uyl<isntl k+l Sjsntl}

contains exactly half of the nodes of the graph. Since MnB, = &, each edge in M is incident to a
node in Z and a node not in Z. Thus, Z contains half, and therefore at least one, of the exposed

nodes, so at least one of the 2n numbers

ViM), . ...V, (M), U;M), . . ., U, (M)

is nonzero. By the symmetry between the Us and V;’s, we can restrict attention to the case that
for some j with 1 <j < n, Uy, (M) is as least as large as any of the other 2n-1 numbers. Then
Ui M) 2 max(V;(M),1} so MnH; < D,(M) by part (a) of Lemma 2.2.2. Hence
ID.M)| 2 [MAH;| = n+1 - V(M) - [MB;|
= m+1 = min(V;M), U;, (M)} = [MNB;|
2 n - gM)2 - gM)ic 2 n(l - a(-;- + 1),

which proves part (d).
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Lemma 2.2.4: Now set 8 = 1/43. If M is a matching of G, such that 0 < g(M) < ncd, then

[AM) |7 *AEM (gM+e) — gMD] 2 1if AM) = O (2.1

P
Ay Ay

and

AR

DODIt B s -gMIzg DML (22
cE

g’

Proof: By part (a) of Lemma 2.2.3 and parts (b) and (c) of Lemma 2.2.2, we have

Vi

c-3 ifee A M)
gM+e) - gM) 2

P

-6 ifee AL M),

.""‘..f.'

which, together with part (b) of Lemma 2.2.3, yields

ﬁ AV |~ ):M ([gM+e) — gM)] 2 |AQM) |~ [(c-3) |A.MD) | - 6]A_ (M| 2 1.
e AQ)

fr Similarly, by part (a) of Lemma 2.2.3 and parts (b) and (c) of Lemma 2.2.2, we have

! 21 if e e D,M)
gM-e) — gM)
2-c+2 ifee D_.(M),

which, together with parts (c) and (d) of Lemma 2.2.3, yields (2.2.2).

=

A
- - ¥

a
Y Proof of Theorem 221: Let t(0) = 0, and, for all k > 0, let t(k) = min {t >
tk-1): g(X) # gXix-1y)}. We can and do assume that P[R® < +oo|Xy = @] = 1. It follows that,
with probability one, R*e {t(1), t(2), . . .}, which implies that
Pli(k+1) < o |R* > t(k), Xo= D] = 1.

| } Y

Given a matching M, define s(M,1) and s(M,-1) to be the normalized sums appearing in Ine-

==

qualities (2.2.1) and (2.2.2) respectively, whenever they are well defined. By Lemma 2.2.4, s(M,0)
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2 12 if 0 < g(M) < ncd and if s(M,0) is well defined.

Let ©, = 1 if the jump at time t(k+1) is caused by the addition of an edge, and let 8, = -1 if

the jump at time t,,, is caused by the deletion of an edge.

Suppose M is a matching with 0 < g(M) < ncd. Then

1
E[g(Xixs1) — 8Kig) [ Xiges1y-1 = My € = 8, Xigeuiy2s - - - Kol = s(M.) 2 >

Averaging over appropriate values of €, and (X;: t(k) < i < t(k+1)), it follows that
Elg(Xugeet) = By - %] g(Xigp) <0cd, R*> 1K), Xpv... Xl 20.  (223)

Also, by parts (b) and (¢) of Lemma 2.2.2, the magnitudes of the increments of g(X) are bounded

by ¢ - 2. Thus, Theorem 2.3 of {13] is in force if we define (Y, &, a°, b®) by

) =

Y, =-gXiqp. €==. a=-nd, and b*=0. 2.2.49)

Using the fact that Y, = —g(@D) = -2n(n+1) < a°, this produces constants 1 >0, p € (0,1) and

D® > 0 such that
P[g(X‘(k)) =0, R* > tk-1) |Xo =)<, 2.2.9)

where u = D exp(-nncd)/(1-p). The term P[R® = t(k){X, = @] is less than or equal to the left
side of Inequality (2.2.5), because if X, is the maximum matching then g(Xq ) is equal to zero.

Therefore, P[R® = t(k)|Xg = @] € u. Since R® € {t(1), t(2), . . .} and, for all k, t(k) 2 k, we have
k
P[R* > k|Xo=2) 2 P[R* > t(k)|X, = @) = 1-F P[R’ = 1(j)| X, = &) 2 max{0, 1-ku}.
=l

Hence,
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{ v Thus, taking o; = (1-p)/2D* and o, = 1ncd, Theorem 2.2.1 is proved.

g

‘ a

;:E Y

E Remark: Some extra work shows that Conditions D.1 and D.2 of [13] are satisfied for Y, a°
2

SIS and b given in (2.2.4) and 1 = .0033683, p = .9998, a° = —ndc, b'=0 and D* = 1. This shows

:: s,; that Theorem 2.2.1 above is true for o; = .0001 and &, = .0014.

o

f

Ly

"g" g 2.3. Near Maximum Matching in Polynomial Time

4

[ Let d* denote the maximum node degree of the graph G and let m* denote the maximum of

A ‘ the cardinalities of matchings in G. The next theorem is the main result of this section.

*

—
.
-

Theorem 2.3.1: Let B> 1. Consider a run of the basic simulated annealing algorithm (of

2 A Subsection 2.1.2) with Ty = T for all k, where exp(—1/T) = A, and A is given by
L} %
s
e A= —t and o =p|V]@dH.
. ! 3|lVie*
iy
- Let R denote the random time R = min{k: |X,| 2 m"* (1——15-)}. Then ER < 24p%|V [*(2d*)%-2.
. v
oo
2 . .
' t‘i Remarks: (1) If B and d" are bounded as |V| = o, then ER = O(|V[%). In the proof below
;; we see that three of these five factors of |V| arise from our upper-bound D, on the mean time the
; :— algorithm takes to make a single move. A smaller average run time can be achieved by using an
N efficient implementation of an algorithm that simulates Xjy, Xj), . . . , where J(k) is the time
>
nY
L e process (X: k 2 0) makes its kth move (see [14]).
, : . . .
e (2) Since 2d* < 2|V|, we have with no restriction on d* that ER < 6822 |V|**28, Also note
; & that if B > m* then Xg is a maximum matching.
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'. g (3) We will briefly comment on our choice of constant T (equivalently, on our choice of tem-
“: perature). It must be large enough so that the process (X;: k 2 0) "jumps sufficiently often”,
é. which is reflected in the bounds given in Lemmas 2.3.1 and 2.3.2a below. On the other hand, T
:l:. must be small enough so that there is a net drift towards larger matchings, enabling us to obtain
'{,’ the bound of Lemma 2.3.3 below.

I

:ﬁt We chose Ty to be independent of k, though we can see some motivation for letting it
;.: decrease as k increases. More precisely, it is clear that an improved algorithm can be obtained by
ETE. letting T, be a decreasing function of [X,|. For example, it is shown in the proof of Claim 2.3.1
( below that a matching M in G has an augmenting path of length at most 1 + 2|M|/(m’-|M}).
' This bound increases sharply as |M| approaches the final value of |X;|, which is m’(1-1/B), and
*\ in the proof we replace |[M| in the bound by this final value. However, working with the |M|-
(- : dependent bound shows that a larger value of T can be used when |X,| is small so that the algo-
\';; rithm "jumps more often,” while maintaining a sufficient drift towards larger matchings.

[

‘ We chose Ty to be independent of k primarily for two reasons: (1) we wanted to demon-
;.:" strate that T, can be chosen independently of the algorithm state ("open-loop" in control-theoretic
:" 5 terms) and (2) we do not think the complexity bounds can be improved much by letting T, be
"“ | either a function of |X,| or a decreasing function of k, because our choice of T, is tuned to the
f’: situation when |X| is close 1o its target value m*(1-1/B), and this situation is the most time con-
Cs

.-\; suming for the algorithm anyway.
~:._: Finally, we think it is significant that we need to decrease T as the problem size increases. It
:E'. suggests that if the sequence T, T,, . . . is 10 be chosen independently of the graph, it should be
._., decreasing.
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Proof: Define a random process (Yy: k 2 0) by

Yi = Xm) i= 0,1.2....

- -

where J(0) =0 and, fori 20,

o
»
Ay

J(i+1) = min{k > JG): X; # X},

and define

v
~ v
:'"‘vﬂ.

R(Y) = min{i: |Y,| 2m® (1 - %)}.

XA

Note that |Yy;| - |Yi| € {=1,1} with probability one for each i.

- -
R ]

Next, define a random process (Z,: k 2 0) by

I

'

E ~ ZI = YS(i) i= 0.1.---

[}

¥
2 K where S(0) = 0, S(1) = 1 and, fori 2 1,
R
W
d E& SGi+1) = min{j: j > SQ), |Y;] - | Y| € {-2,2}}.
g and define
:1 ! R(Z) = min{i: |Z] 2 m*(1 --“3-)}.

;:ZE Define constants Dy, D, and D5 by

[y -

"

i = D, =6|V|* 0", D, = 2a", Dy =2|V|.
: Lemma 2.3.1:
o E[JGi+1) = JG) [JG), Koo Xy, . - .+ Xgg)] S Dy
e Lemma 2.3 2a:
; - E[(S(i+1) - S(l))l(l < R(@2)} IS(I), (YO' Y]. e YS(i))] < D2.
» >

E Lemma 2.3.3:

. ; ER(Z) < D,

~

We will next prove Theorem 2.3.1, assuming the lemmas are true. We have

4
i »
ol
)
A ]
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ER = EJR(Y)) = EY, (J(i+1) = DI, crey) = X EUG+1) - J())|i < RONDIPli < R(Y)).
w0 =0

Now the outcome of the event (i < R(Y)} is determined by (J(i). X . . . Xjg)) 0 we can apply

Lemma 2.3.1 to get
3 ERS 3 DPli < R(Y)] = D;ER(Y).
w0

e Similarly, the fact R(Y) = S(R(Z)) and Lemma 2.3.2a imply that ER(Y) < D,ER(Z). We conclude
R that ER < DyD;D, from ER < D ERy, Lemma 2.3.3, ER(Y) S D,ER(Z), and Lemma 2.3.3. This

will establish the theorem once we prove the three lemmas above.

QI

Proof of Lemma 2.3.1. By the strong Markov property of (X,: k 2 0),
oV EUG+1) = JG) JG), Koo X, - . . . X)) = EUG+1) = JG)|Y,).

+ ﬁ Since A, = A for all k, the transition probabilities of X are time invariant, so

f
"..p

e EQJG+1) - JOIY, = M] = P[Xy # XX, = MT™"
T\ Now, fix a matching M. One of two cases is true:

Case 1 Some edge in E is matchable relative to M. Then

P(Xyo # X, [X = M] 2 ——

[El
Case 2: No two of the |V| - 2|M| exposed nodes are connected by an edge in the graph.

W,
.(':.', Then

-

-~ -

N Vi) vi- 2w
Bl | |- | = MIIVI - 2M] - 0 < 21V

so that

_':,..
A
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P(Xy,) # Xy Xy = M] = AM| 2 —
|E| 2|V|

Hence, in either case, E{J(i+1) - J()|Y, = M] S max{|E|, 2|V|/A} = D;.
@]

Proof of Lemma 2.3 2a: Lemma 2.3.2a is trivial for i =0, so we fix t withi 2 1. Let m be

an integer with 1S m<m*(1-1/B). Define a set of mawchingg B by
= {M: (M| =m-1o0r [M| =m} and let M, be a fixed matching in B. Consider the event
F={Ys; =M, Yg4-1 € BandR(Z)>i}. The outcome of F is determined by
(S(1). (Yo, Y}, . . ., Ys;)). and the union of events of the form of F as M, and m vary as above is

equal to the event {R(Z) > i}. Hence, it suffices to prove that

E(S(i+1) = S()[SG), (Yo, Yy, . . . . Ysllp S Dy
for arbitrary fixed values of m and M, as above. Without loss of generality, we assume that if

[My| = m=-1 then Q(M,) = O, otherwise, F = @ (recall that Q(M,) is the set of matchable edges

relative to M).
If the event F is true then S(i+1) = min{j > S(i): Y,eB}. Using this and the strong Markov

property of (Y,: k 2 0) we have

E[S(i+1) = SG)[SM).(Yor - - . . Yseplle = E(min(j > SG):Y, € B} = S(i)[Ysg) = Ml .
= E(S|Yq = M, '

where S denotes the stopping time S = min{j 2 1: Y, ¢ B}.

Let B be the set of matchings B= (M: [M] 2 m-1}. Note that B = B. We let (Y,: k 2 0)
denote a stationary-transition Markov chain with state space B and one-step transition probabilities

determined by conditioning (Y, . k 2 0) to stay in B for each consecutive jump:

P(Yyo = M'[Y, = M = P{Y,., = M'[Y, = MJ/A(M)

e R AT . Y R IR O o D T
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for M. M’ in B, where A(M) = P(Y,,, € BlY, = M].
- Define a stopping time §, by §, =min{k 2 1: ‘?, € B- B). Let S_ denote a random variable
Dol on the same (or possibly enlarged) probability space as (\-'o- ?,. .. .) such that
— - - k-1 _
_). P(S. > k|YoY;...] = S ACY).

Let S=min(S,.S). If we impose the conditions Yo=M, and Yo=M, then
. (§. ({Q; 0<k<9)and (S. (Y,: 0 Sk < 8S)) have the same distnbution. Since Ssg §. it folows

that

- -

-

-";
-

E(S|Yo=M,] S E[S,|Y, = M,). (2.3.2)

g -
‘I"‘l‘

e

Lemma 2.3.2a is implied by (2.3.1), (2.3.2) and Lemma 2.3.2b, which is stated and proved next.

AN
. +

el

0

)

>
4,

Lemma 2 3.2b: Under the conditions given in the proof of Lemma 2.3.2a

L

K

E(S.|Y, = M,] S 20",

&

.‘
.

Proof of Lemma 2 32b: Either |[M,| =m or [M,| = m-1. We will prove that if |M,| =m,

4 1
\,',‘

L] ,'

then

N

R E(S|Yo=M,]S20" - 1. (2.3.3)

».2 This will imply the lemma in general. Hence, we assume that |M,| = m for the rest of the proof

of Lemma 2.3.2b.

\.-: For any matching M, let f(M) denotc the length of the shortest augmenting path for M. The
e function f(M) is well defined if M is not a maximum matching (in particular if |M| =m), and

fiM) € (1. 3.5....}. Let L denote the maximum of f(M) over all M with |M| = m.

s >

e e)
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Claam 231 [15] Ls2p-1

Proof Let M be a matching with |[M| = m and let M* be a maximum cardinality matching 1n
G Let G’ denote the graph with a set of nodes V and a set of edges M@M®, where M@M®
denotes the symmetric difference of M and M® Each node in G’ has incident 1o it at most one
edge from M and at most one edge from M°. Thus, all maximal connected components of G’ are
paths or cycles, and all cycles have even length. The cycles and even length paths each have an
equal number of edges from M and M°, while each odd length path has exactly one more edge of
M’ than M and is an augmenting path for M. Thus, there are at least m* - m node-disjoint aug-
menung paths for M, which, altogether, have at most m edges of M. Thus. one of the augmenting
paths has no more than m/(m°-m) edges of M and hence has length at most 1+2m/(m°-m).

Finally, 1+2m/(m°~-m) < 2B~1. since m < m"(1-1/B). and the proof is compiete

Claim 2.3 2. Suppose M is a matching with |[M| = m and define py and p, by

p°=2—:n- and plzmin{%.l -~ Pol).
Then forallk 20
(3) P[f(Ya,5) € f(M) = 2|Yy = M] 2 p, if fM) 2 3,
) P[| Yy | 2 m+1]Yy = M] 2 pg if f(M) =1,

(©) Plf(Yy ) > fM) + 2|Yy = M] =

(d) P[f(Yy.p) = M) + 2| Yy = M] S ;.

Proof- We will first prove part (a) under the assumption that f(M) 2 5. Choose an augment-
ing path p for M of length f(M) and label some of the nodes and edges of 1t as indicated in Figure

231 Since p is an augmenting path of the shortest length, no neighbor of u,. except possibly
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Figure 2.3.1. An augmenting path for M.

node vy, can be an exposed node. Also, if u; and v, are neighbors, then w; and v; are not. Thus,
there are at most two choices for an edge ¢’, namely ¢, and possibly either [u,.v,;] or {w,,v,], such
that f(M - e, +¢’) 2 f(M). There is also at least one choice of ¢’, namely ¢’ =¢,, such that
fiNM —¢, +¢)=f(M) -2 Thus,

Pf(Ya.) = (M) = 2|y, =M —¢,] 2 173,

Thus 15 true with e, replaced by ¢, as well, so

PiYy.n = M) = 2|Yy = M) 2P[Yy,, =M —¢, of Yo, =M - ¢;| Yy = MJ/3

=—~—2 2-——1 = Po
3IMI - 2IM]

This establishes part (a) if f(M) 2 S.

We will now complete the proof of part (a) by ccnsidering the case (M) = 3. Let

'v.,w,, w: v.] be an augmenung path for M of length 3 and let ¢ = [w;, wy]. Then e 1s in M,

N
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and nodes v, and v, are not neighbors. Now, if ¢’ is an edge such that

f{M~-c+e)23 23.4)

then ¢’ must be incident to either v, or w, and to either v, or w,.

Moreover, if ¢’ = [v, w,] is such an edge, then v, and w; must not be neighbors. Thus,
there are at most two choices of e’ such that (2.3.4) is true, namely e and possibly one of [v;, w;]
or [va, w;]. There are also at least two values of ¢’ such that f{M - e + ¢") = 1, namely [v;, w,]

and [V:. W:]. Thus,

Pf(Yap.p) = fOM) - 2|V = M) 2 % P(¥psy = M - e|Ts = M] = py.

Part (a) is proved.
Tumung to part (b), assume that f{(M) = 1. Then Q(M) is not empty. Hence,
Pl Yy | 2 me11¥5 = M) = P{| ¥y, ] = m+1]Yy = M] = |QM) [/(|QM)| + Am)

2 (1+mA)~! 2 (1+m)~! 2 py.
so that pant (b) is proved.

Pans (c) and (d) will now be proved. Choose an augmenting path p for M of length f(M).

Let

I, = {(e;.e0): ¢, € M, e, is matchable relative to M ~ ¢}, and f{(M - ¢; + &3) 2 f{(M) + 2].

Suppose (e,.e.) € T,. Then e, and e, are incident to a common node (otherwise e, is matchable
relative to M - e, + e, e, is matchable relative to M, and hence fM - ¢, + ¢y = f(M) = 1, a con-
radicuon; and ¢; ® e,. Since p is not an augmenting path for M — e; + ¢,, al least one of ¢, or ¢,
1s incident 1o a node of p. This means that either ¢, is an edge of p or e, is incident o one of the
exposed nodes on the ends of p. Thus, we have narrowed down the possibilities to one of the four

cases shown in Figure 2.3.2. We can rule out the first three of these cases, because in these cases

there is an augmentng path for M - ¢, + ¢; with length at most the length of p. We have thus




-
0 'v.,
]

APLCCINTS

Figure 2.3.2. Four possibilities for (e,.e,) are pictured. Edges in the path p are drawn straight
and horizontally. Edges in M are bold. Nodes v, and v, are the end nodes of an augmenting path
for M — e; + ¢,. Only the fourth possibility can really occur.

shown that if (e;.ep) € T,, then e, is incident to an exposed node of p, e; and e, are incident to a
common node, and e, is not in the path p. It follows that f{(M — e, + ex) = f{(M) + 2, for any
(ey.ey) in I,, which proves part (c).

Define

= (e (ey.6y) € T, for some e }.
If e € W then there is exacly one edge, call it w(e), such that (w(e), e) € I',. Each edge in W is

incident to an exposed node of p so that |W| < 2d*. Thus,

P[f(\—,n.;) = f(MH2|?;k =M]= Z P[?u*z =M~ e + e, \—'Zk-bl =M-¢ |?'.‘.k = M]
(e‘,&,)er,

Y \-\\1.

e
A ~r - oM
‘f' oy, o. N Y '\ i.l!t.'!u‘!i.‘!vt\




= T P[Yye = M- wie) + ¢ Yoy =M = WPV = M - w(e)| Yy = M]
e W

.
LESIN

i

1 1 1
)y : s |Wl= _
W |QM-w(e))| [M] 2 M|~ IM]

<
Together with parts (a), (b), and (c), this proves part (d) so that Claim 2.3.2 is completely proved.
a
We will now complete the proof of Lemma 2.3.2b using Claims 2.3.1 and 2.3.2. Define a

process (Uy: k20) by U, = %(l + f(?Zk))I(sti]- Note that U, takes values in {0, 1...., L}

where L = (1+0)/2. Claim 2.3.1 implies that L < B and Claim 2.3.2 implies that

2Py ifi=j~1
PUy; =ilUi =3, Upep, ..., Upl § =0 ifi2j+2 . (2.3.5)

Spy ifi=j+l

"
Let (W,: k 2 0) denote the Markov chain with one-step transition probabilities shown in Figure
2.3.3. From Equation (2.3.5) it follows that if Wy = Uy, then the Markov chain (W;: k 2 0) sto-

chastically dominates the process (U;: k 2 0). Hence,

E(S.1Yp = M,] + 1 = 2E[min{j: U; = 0} |Yp = M,]
S 2E(min(j: W; = 0} | Wy = fM,)]

< 2E[min{j: W, = 0)|Wp = L]
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Figure 2.3.3. One-step transition probabilities for the Markov chain (W,;: k 2 0).

222l

This establishes Inequality (2.3.3), so the proof of Lemma 2.3.2b, and hence also the proof of
Lemma 2.3.2a, is complete.
@]

Proof of Lemma 2.3.3: In the first part of the proof, we will refer to the setup in the proof of

Lemma 2.3.2a. By the reasoning there, we see that fori 2 1,

oty
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PU | Ysgeny | > [Yspl ISO(Yo Y1 - - . . Ysallg = P[|Ys| = m+1]Yo = MJIg

=P[S_> §,|Yo = M )¢

S,~1

=E[JT AW)|Yo = MJIg,
0
The term A(Y)) is equal to

lQ(Y)| i

P(Yi.€BlY =Yl = _
1 if |7, 2m.

As in the proof of Lemma 2.3.2a, we assume that if |M,| = m-1, then QM,) # &. Hence, if
Yo =M, and |Yo| = m-1, then Q(Yp) # @. Moreover, if |¥;| = m~1 for some j 2 1, then Y, , is

a matching containing Y; and so Q(Y) # &. Thus, given Yo =M, Q(Y;) # & whenever |Y}|

m-1, for all j 2 0. Therefore, given Yo = M, we have A(Y) 2 (IHm-DA)™! 2 (1+—7‘-|21L)". Also,

note that |Y;| 2 m for at least half of the values of j with 0 < j < §,~1. Thus,

S.~1 o _ .
ELTT A%)I%o =M 2 Ef + 2052 19,22 4 Ay
=0

2 exp(-A|V|w®*/2) = exp(-1/6) = 5/6,
where for the second inequality we used Lemma 2.3.2b and Jensen’s inequality, and for the last
two inequalities we used the inequality exp(u) 2 1+u. Therefore, fori 2 1,

Pl 2| > 2] |2, . . . . Z) Ry > i} 2 (5/6)(Rez) > -
Now |Zi| = 1Zi] € (-2,-1,1,2} so that

5 1 1
E( (Zi] - 1Zil|Zo - . . ZHrey > iy 2 (E -2 -'g)lm(z» iy = EI(R@)>U'

which implies that the process
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-1 . .
—Z_-)I(R(z)s”. i=1,2,..

i—-1 R
zl - ’—2—)1(11(2)> g+ (Zrpl - (2)
is a submartingale uniformly bounded from above. Thus, by a version of Doob’s optional sam-

pling theorem (16, Theorem 7.4.6.ii]

R(Z) -1 1-1
E ‘:lzﬁ(z)| - _@2L_] zr—:[|z,| __2._] >0,
which yields

ER(Z) < 2E|Zggy|+] € 2m*+1 < |[V|+1 < Ds.

Lemma 2.3.3, and hence Theorem 2.3.1, are completely proved.

2.4. Simulated Annealing when Temperature Schedules are Constant

In this section, we consider the limitations of restricting our attention to degenerate tempera-
ture schedules that have only a single value. The main result of this section is the theorem follow-
ing the next set of definitions. Let G’(n,d") be the set of all graphs with n nodes and maximum
node degree d*, M’(G) the set of all matchings of graph G, and m°(G) the size of the largest
matching of G. Let R(G) be the set of all symmetric transition probability matrices R over M'(G)
with the following property: for all i, j € M'(G), there is a positive integer k and a sequence
i =1i(1),i(2), . .. ., i(k) = j of matchings from M'(G) such that Rig,yin+1) > O for all h such that i <
h € k-1. Let ¢ be the cost function on M’(G) such that c(M) = — |[M|. Suppose R is a transition
probability matrix over M'(G). Let (X®RD:k20) be the annealing process on system

(M’(G), c. R) with temperature schedule (T, : k 2 0) such that T, = T for all k 2 0.

Theorem 2.4.1: Suppose B and d” are real numbers and n is a positive integer such that -;l 2

20y Let Q@ n, d°) equal

B 2 max{8,
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max inf min  max E[min{k: |XCRD| > 1-8"Hm"(G = M].
PR LR R [min{k : |Xg | 2 - )m (G} ]| X, ]

Then

Remarks: (1) From Theorem 2.4.1, if 2 % then
n
. 0 . 4[—151
QP,nd)2Q(~,nd)2 — -1
4 5
(2) Note that Theorem 2.3.1 implies that
Q. n, d°) s 24pn°(2d")*H2.
(3) Theorem 2.4.1 and part (2) of these remarks imply that if B is at least two and is con-

stant on n then Q(f, n, n) is upper and lower bounded by polynomial functions of n such that the

functions have exponents that are linear functions of f.

We will prove Theorem 2.4.1 after presenting two lemmas and defining a graph A(Ay, Ap),
which is a generalization of the graph G, of Section 2.2. Graph A(Ay4, Ap). shown in Figure 2.4.1,
consists of 4AyA; nodes and has maximum node degree 2Ay + 1. Just as in graph G,, the edges
of A(Ay, Ap) are partitioned into the subsets Hy, Hy, ..., Hy, By, By, . . ., By -1- These subsets
are indicated in Figure 2.4.1. For each i, such that 1 <i < A, H; consists of 2Ay edges that are

disjoint, and, for each j, such that 1 < j < A;~1, the subgraph induced by the nodes of the edges of

A
B; is a complcic bipartite graph consisting of 4Ay nodes. Also note that H = (H; is a unique
=l

maximum matching of A(Ay, Ap). If Ay =Ap =n then A(Ay, Ap) is isomorphic o G,,; of Sec-

tion 2.2.
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Figure 2.4.1. Sketch of graph A(Ay, Ap).
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Lemma 2.4.1: Let Ay and n be positive integers such that n £ 2Ay - 1. Let S, be the set of

all matchings of A(Ay,Ap) of size IHI - n. Then

Spn| _ @hen)'*
> .
|Sal n+1

Proof. Suppose M is a matching of S,. Then M@H is a set of n node-disjoint paths, and
cach path is characterized by a sequence of edges e, e ..., ey, Wwhere
¢€Hj. ;6 B;, e3e H,y, €,€By,y. . . ., en€Hyy for some j ;nd k. We will call such kinds of
paths strerched paths. Since (H®8M)@H = M, there is a one-to-one and onto correspondence

between clements of S, and elements of the set, T,, of all sets of n node-disjoint stretched paths.
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We wiil now proceed to show that

ITot] _ Qa-m™
T, n+1

which is sufficient to prove the lemma. Observe that from each element t of T, we can generate

, (2.4.1)

elements of Ty, in the following way. We find a streiched path p that starts in Hy, ends in H,_,

and is node-disjoint from any of the paths in t. Since n £ 2Ay - 1, there are at least (ZJLH-n)RL
such paths p. Then we add the path p to set t to form an element of T,,;. In this way, each ele-
ment of T, can generate at least (ZXH-n))"' elements of T,,;. But, each element of T,,, can be
generated in this way by at most n+1 elements of T,. We can then conclude the inequality (2.4.1).
O

Lemma 2.4.2: Let S be a finite set and ¢ be a cost function on S. Let R be a2 symmetric tran-
sition probability matrix over S such that for all i, j € S, there is positive integer k and a sequence
1=1(1), i(2), . . . ., i(k) = j of states in S such that Ripyne1) > 0 for all h such that 0 S h < k-1.

Let vy be some constant,

¢, = (s € S:c(s) < yand R,y > O for some s’ such that c(s’) > v},
Yo =min{c(s):s € S -},
and
Ay=(se S-Lrcs) =7}
Let (X,: k 2 0) be the annealing process corresponding to (S, ¢, R) with a temperature schedule

(Ty: k2 0) such that Ty = T for all k 2 0. Then for T > O there is a state s € S such that

E[min{k > 0: c(X0 S V) [Xo =s] 2 |A,l/]g].

Proof: 1f §, or Ay are empty then the lemma is trivial to prove. Thus, we will assume that

both {, and Ay are not empty. Since the purpose of the proof is to lower bound

E[min{k > 0: ¢(X,) < ¥} |Xo = s}, without loss of generality we will assume that all states in {,




have cost exactly equal to Y. We have assumed that T > 0 and R is a symmetric transition proba-
bility matrix over S such that for all i, j € S, there is an integer k and a sequence
1=1(1),i(2),.....ik)=j of stales in S such that R,num+1y>0 for all h such that 0 € h < k-1,
and, therefore, process ()'(k: k 2 0) has the limiting distnbution (%,: s € S), called the Gibbs distri-

bution, where %, = exp(—c(s)/T) ¥ exp(~c(6)/T). Then
ceS

= E(min(k 2 1: Xee L Xo=s] = (L)t
€ G, Zno 7148
oe,

Thus, there is a state § € {, such that

(L r)' SEmin{k 2 1: X, € ) [Xq=38).
wly

Since

Emin{k2l: Xy € {}HXo=81=1+ T R exp(-[c(s»c()VTEmin{k 2 1: X, € {,}|X,=5s]
1€ S-3,

and 3 R, < 1. there must exist a state se S~{ such that
€Sy

exp(=[c(s)-c(O)VDE(min{k 2 1: X, € §,}Xg=s]+1 2 (X ny)™".

oel,
The previous inequality implies
Y exp(—(c)/T)
exp(=[c(s)<®VTEmin(k 2 1: X, € {)} | Xo=s]2( X ) ' - 1= '
PR E Sl To=sl 2t g e ylexp-yD

which in tum implies

p _exp(=[c(0) - YI/T)

o€ S~

|8y lexp(=lc(s) - ¢(3)IT)

E(min{k 2 1: X, € §,)|Xp=5] 2

|Aylexp(~[Y, = YI/T)
|8, lexp(=[c(s) = c(®)IT)
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E. 2 exp(([c(s) — c(®)] - [Yo = VIV A1,

2 | ALl 1G,l.

and we are done.

. -
N i‘.
. = Proof of Theorem 2.4.1: Let Ay = [-g-_l and A = [-g] Then A(AyAp) is a graph with at
NI
:i .. most n nodes and maximum node degree at most d*. For positive integer k, let S, be the set of all
AR
> £ A
Sks 2A
3 matchings of A(AgAp) of size |H| — k. From Lemma 2.4.1, l|; Ill > :: ) forallk <
» k
N l_%_]. Thus, for all k < [—%J, we have
4 4 .
- 1 kl. 2 k L‘. l‘.l
Y4 S| | @urlgh™ 151" gl
N ISe] n n n,.,
- |+1 oAt —]+1
2] Bl 13
- . JLEJ
] JH
b . LetQ=—B—— Then |S,|< (l/Q) IS o) | forallks L—J Therefore,
N L1+ B
‘: <
o 3] 151 .
A TIsdsls, IZ(I/Q)""' IS a, | ZQ. (24.2)
o 1<) g+t
3 k=0 B 8 k=0
g
M

Since we have assumed that 8 < < % Q is greater than one, and, thus, the right side of (2.4.2)

T is finite and is equal to lsl"J 1|(Q—~1)". Hence, it follows that
[} . -4
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b | I n lﬁ ]
. (=141 =
N - 2Q-1= L (243)
> l5) |2 J+1
‘N B B
N X sl
) Let G = A(Ay, Ap). Lemma 2.4.2 and (2.4.3) imply that, for any T > 0 and any transition proba-
2,
-~ bility matrix R € R(G),
::,‘;
*‘ i
' n 2
max_ Efmin{k : |[X{CRD| 2 [H| - [Z]}| X{ERD = M] 2 B 1 e
o Me M'(G) B |2 [+1
Jh." L] . . .
0 Since (1 ~ B Hm "(AQAy, AD) = (1 = PH|H| 2 |H| - L—g—]. Inequality (2.4.4) implies that, for any
T > 0 and any transition probability matrix R € R(G),
*\
i s
{ max_ E(min(k: [XSRD| 2 0-pHm (G)} | XCRP=Mj2 B — _ 1,
l . Me M(G) L£J+1
e P
d ::f which implies the theorem.
R
D a
o™
e
:_’, 2.5. Speculations
w
A
_ We believe that Theorem 2.2.1 is true for constants 6, and 6; much larger than what we pro-
x':-
:;}: vided in the proof and that ER is significantly smaller than the upper bound given in Theorem
:{,'. 2.3.1. Moreover, we conjecture that for 0 < r < 1, the average time needed for the controlled
a3 processes described in Section 2.2 to reach a matching having cardinality at least the maximum
- possible minus |V|® is not upper bounded by a polynomial in |V| for some sequence of graphs.
[
s* We believe that graph A(Ay Ap) of _ection 2.4 and the techniques of Section 2.2 could be used to
prove this conjecture.
™
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R . The upper bound on ER given in Theorem 2.3.1 is valid for all graphs with a specified
number of nodes and maximum node degree value. In the next chapter, we try to bound ER when

e, - we restrict our attention to graphs G that are "typical” in some sense.

- ' Our methods of analyzing simulated annealing, like the deterministic methods known for
“{ solving the maximum matching problem, do not easily carry over to "industrial strength” variations
-y - of the problem or to other problems. More work will be needed to evaluate the average time com-

2N plexity of simulated annealing and other search heuristics for a wide range of problems.
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CHAPTER 3

:‘ MATCHING PROBLEM: AVERAGE PERFORMANCE FOR TYPICAL GRAPHS

3.1. Introduction

:. In Theorem 2.3.1, we presented an upper bound on the average amount of ume the basic
simulated annealing algorithm of Subsection 2.2.1 takes to find a matching with size at least a frac-

¢ tion 1 — B! of the maximum matching. If B = |V|/2 then the upper bound is
6]V|'@d"HVI-, (311
Expression (3.1.1) 1s an upper bound on the average amount of time the algorithm takes to find a
maximum matching of a graph (V,E) with maximum node degree d°. Therefore, if we exclude
graphs with no edges then (3.1.1) is exponential in |V|. However, (3.1.1) is a bound applying to

all graphs of a specified number of nodes and value of maximum node degree.

4 Our objective of this chapter is to find an upper bound on the average ume complexity of
simulated annealing for the matching problem for a "typical” graph. We will make this objective
precise after the following definitions. Let m be an increasing positive integer valued function of
n. Typically, m(n) = |cn®| where & and c are constants. In this chapter, we will use m as a func-
tion only of n, so we write m for m(n). Let G(n.m) be the set of all graphs with node set {1, 2, . .

. n} and m edges. Suppose A, is the subset of all graphs in G(n,m) with some property Q, and

-
»te wiun » 3N

|A,|/]G(n.m)|—1 as n—oe. Then we say that almost every graph has property Q. Our aim is to
find a small function g such that for almost every graph the average time it takes the simulated
annealing algorithm of Subsection 2.1.2 to find a maximum matching, if the graph has n nodes, is
at most g(n). In this sense, g(n) upper bounds the average time complexity of simulated anncaling

for the matching problem for a "typical” graph with n nodes and m edges.

. !

AN e n T \“ DAL O -.- ¢

L S e e




S TR

Wy

L L

vy
A

[

N, |

,lrl
> .

AN

13

»

"

:

AL N NN,

WY

e

41

Since we do not know of an exact analytical method to find a small function g, we use
heunsuc approximations of the annealing process to estimate one. The approximations of the
annealing process and an estimate for a small g are presented in Section 3.2. The estimate is com-

pared with computer simulations in Section 3.3, and conclusions are given in Section 3.4.

3.2. Approximations and Estimates

We are interested in approximating two processes. The first is the annealing process
(X,: k 2 0) of the basic simulated annealing algorithm of Subsection 2.1.2 for a "typical” graph in
Ginm) and T, = T for all i 2 0. Note that since the sequence of temperature values is not decreas-
ing. (X k 2 0) 1s not, stnctly speaking, an annealing process. We will approximate (X;: k 2 0)
by a process (Y,. k 2 0) that aiso has a parameter T. We will then use (Y, : k 2 0) to approximate

E{min(k: X, is maximum}|X, = O}, (3.2.1)
when the graph is a typical element of G(n,m), and to find a value of T so that (3.2.1) is small.

The second process we are interested in approximating is (X, : k 2 0), which is the limit in
distnbuuon of the process (Xjy): k 2 0) as T—0, where J(0) = 0 and J(k+1) = min{j 2 J(k):
X, # Xjq,) for all k 2 0. The following is a procedure for simulating (X,: k 2 0). Let X, equal' a
matching. Having selected X, X,.....X, choose X,,, as follows. If X, is maximal then
choose an edge e at random from X,, all such edges being equally likely, and let X,,, = X, - ¢.
If X, is not maximal then choose an edge e at random from the set of edges matchable relative to
X,. all such edges being equally likely, and let X,,, = X, + e. Note that (X,: k 2 0) is not depen-
dent on a temperature parameter, and, by the theorem of Berge and Norman and Rabin [10,

Theorem 10.1], it will eventually visit a maximum matching.

We will approximate (X,: k 2 0) by (Y,: k 2 0), which we define as the limit in distribution

as T-0 of (Xpx): k 2 0), where J(0) =0 and J'(k+1) = min(j 2 J'(k): Y; #Yq,) for all k 2 0.

N e A R Y A A A R T A e P, S AT s e R
v AP be W 7, W UL %
A NN N A SN N 1»‘...-1.. .r!"-v..'» il

8 A % K X TN AY P MR LT M % e
AR RN L M G, UM TR N O

-




A

.
s

N % % ‘s

-
2 Rt

5}}}5}}

SARBAL RO

[/
B

42

Then we will use (Y,: k 2 0) to approximate

E[min{k 2 0: X, is maximum}|X, = @), 3.2.2)
when the graph is a "typical” element of G(n,m). We are interested in estimating (3.2.2) for two
reasons. First, in Section 3.3, how close (Y,: k 2 0) approximates (Xi: k 2 0) is determined by
comparing the estimate (3.2.2) with data from computer simulations. This will be an additional
check on how accurately (Y,: k 2 0) approximates (X,: k 2 0). Second, simulating (X,: k 2 0) is
an altemative to the simulated annealing algorithm for the matching problem, which at times may

be preferable. Hence, we are also interested in its ime complexity.

This section is organized as follows. Process (Y,: k 20) is presented next. Using
(Y, k 2 0), we give an estimate of a value of T that should make (3.2.1) small. Finally, we

present an estimate for (3.2.1) (resp., (3.2.2)) using (Y, : k 2 0) (resp.. &, . k20).

n

The state space of (Y : k2 0) is ;J{ s(i,0), s(i,1), s(i,2), s(i,3)]) and each state corresponds to
a rype of matching rather than a particular matching. State s(i,j) corresponds to matchings of size i
that have their matchable edges configured in the following way: for j equal to, respectively, 0O, 1,
2, or 3, the set of matchable edges is, respectively, empty, a single edge, a path of length three, or
two disjoint edges. The transition probability P[Y,,; = s(a;,b;)|Y\ = s(ag.bg)] approximates the
“"typical” one-step transition probability of (X,:k 20) from an s(agbg)-type matching to an

s(a,.b;)-tvpe matching. Note that an s(i,j)-type matching does not exist for all i and j such that
0sis L% ] and 0 <j < 3. For example, all edges are matchable relative to a matching of size

zcro, but, there are at most three edges that are matchable relative to an s(0,0)-, s(0,1)-, s(0,2)-, or
$(0.3)-type matching. These inconsistencies are due to the fact that process (Y,: k 2 0) is based on
some assumptions on G(nm), T, and process (X,:k 20). We ignore these inconsistencies,

because process (Y, : k 2 0) is relatively simple and it seems to do a fair job of approximating the



A A A A Rl Bl

B3 o %
R
wy ,
R ‘ behavior of (X;: k 2 0).
f:_::'_ . We will now discuss three assumptions on G(n,m), T, and process (Xi: k 2 0) that process
:5::', (Y,: k 2 0) is based on. First, we assume that -lz-l-exp(-l/T) is a small fraction. Under this assump-
w
Ay ton if X, is a matching that is not maximal then with high probability the next matching
~
\'.-
e (Xi: k 2 0) visits will be a larger matching. We make this assumption because we are only
e
B <,
interested in values of T that make (3.2.1) small, and if T is large enough so that the long-term
e
:"j :; drift of (X,: k 2 0) is not towards larger matchings then (3.2.1) will be large.
Ca
M
.':-i 2m
' -.:: - Second, we assume that the average degree of the graph (= -n—) is small relative to n. For
o~
@
Q . the rest of this chapter we will use d for the average degree. We are most interested in the case
.
(A= ".‘
.‘:

when % is small, because for a fixed value of n, the smaller d is the more time it takes (X,: k 2 0)

o
¥
-

e to reach a maximum matching.
\ \ Third, suppose that (X;: k 2 0) typically occupies matchings of size i. Then we assume that
’ L n - 2i is small. The value n - 2i is an estimate of the number of exposed nodes relative to a
Sj - matching of size i. The estimate will be accurate if m 2 cnlogn and ¢ > -;— for then maximum
SIS
:;: - matchings typically have cardinality near -'21 (see [17]). Our assumption that n — 2i is small should
e &
5 :f' . . . n d
Y be consistent with the assumption that exp(-l[r)a- and Y are small, because then we would expect
w
", -
'::- - that for a large fraction of the time, before reaching a maximum matching, (X;: k 2 0) will be in

-
-
|

matchings that have size that are near maximum.

e

Before describing (Y,: k 2 0) in more detail we will simplify the notation by letting

P
¢

‘i

e p(a;bpiagby) = P[Yy,; =s(agby|Y, =s(a;,b)] and @ = n-2i. A schematic description of
:'-',1 (Yy: k 2 0) is given in Figure 3.2.1. Each box in the figure corresponds to the state labeled on its
_» left or upper left comer. Inside each box is the configuration of matchable edges for that state,
Y {
o
_;: A
]
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-." . ' where & means no matchable edges. An arrow from a box corresponding 1o state s(ag,bp) to a box
; . corresponding to s(a;,b,) means the transition probability from s(agbg) to s(a;.by) is positive. We
\ = do not indicate by arrows the positive transition probability of a state to itself. The transition pro-
. ', bability values are presented in Figure 3.2.2. We will ignore states s(0,0), s( LLZ’-J,Z). and s( L%_l 2),

‘ because there are no transitions out of these states with strictly positive probability.

g Next we will give heuristic reasons for our choice of the states and transition probabilities of
" b (Y,: k 2 0). Note that all transition probabilities of (Y,: k = 0) that correspond to increasing the
S ,). size of the matching are chosen to be consistent with the configuration of matchable edges of the
- state of which it came from. For example, there are three matchable edges relative to an s(i,2)-

tvype matching. Matching one of these edges gives you an s(i+1,0)-type matching and matching

S

either one of the other two edges gives you an s(i+1,1)-type matching. Hence, p(i,2;i+1,0) = m™'

- and p(i,2;i+1,1) = 2m~'. We assume exp(-l/'r)% is small and, therefore, if (X : k 20) is in an

IS
.,_j " s(i,2)- or s(i,3)-type matching then with high probability the next matching it visits will be a larger
- '—_ one. Thus, for all i [_%_[, we ignore the possibility of a transition from either states s(i,2) or
-

-

:.': “ s(i,3) that corresponds to decreasing the matching size.
a0

rl

y We will now discuss the transitions out of s(i,0), which is the state corresponding to maximal
L

j'.: : matchings of size i. In this discussion, we will suppose M is a "typical” maximal matching of size

‘,.

. :: i. We assume that for each ¢ ¢ M the end nodes of e do not have a common neighbor, which is
4_ consistent with the assumption that 4 is small. Since M is maximal, for all edges e € M, all
‘. n
o
- matchable edges relative to M-e share a node in common with e. Thus, we can partition M into
. i- two subsets A and B, where subset A contains all edges e such that each node of ¢ has at least one
::: neighbor that is exposed relative to M, and subset B contains all edges e such that at most one
.'\‘ )‘

'.’ '.' - . .

o node of e has a neighbor that is exposed relative to M.

o,

3 P
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- Forallisuchthat1<is L%J.

o p(i,05i-1,2) = min( 1.((n-2i)(d-1)/n)2}iﬂlr':—’rl,

-.\-'_.

A

N

bt o . _exp(=1/T)
p(i,0;i-1,1) = max(0,1-((n-2i)(d-1 )/n)’}xf—"Ll;—,

pGi.1;i-1,2) = mm[2(d-1).i}ﬂﬂ(:—m—.

0 and

p(i,1;i-1,3) = max{0,i-2(d-1)) exg(;lrr) .
For all i such that 0 € i < L% -1,

- 1
'2; 110 = -,
p(.2;i+1,0) -

. 2
[l [
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o

X
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Y
.‘v'l.l

pi.2;i+1,1) =

)

l&.
8|~

LR

o
oy

="

and

p@i,3;i+1,1) =

‘5.‘-.".".""'.'-'. <
8 |~

St
AR

L All other transition probabilities are zero, with the exception of transition probabilities from a state
to itself.

r] .~ l\. »
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Figure 3.2.2. Transition probabilities of (Y,: k 2 0).
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. .' Our estimate of the size of A and our characterization of the types of "typical” edges in sets
B -
'_:Z A and B are based on the following argument. Let e = [i, j] be a "typical” edge of M. We
Ka o
f- S assume that the degree of each node of e is d. We also assume that for each neighboring node v
s

)

- 4 . of i or j that is neither i nor j, the probability of v being exposed relative to M is -3 Combining
l*‘ .—-.

::I these assumptions on ¢ and the assumption that q and -% are small we have the following approxi-
NS

o mations:

W P

~ s

N P(The nodes of e have no exposed neighbors]
N \ ;..

O = q-9yen o _2d=Do (3.2.3)
q n n

- P{Each node of e has exactly one exposed neighbor]

< = @-2a-* = @-ndr (3.2.4)
(. i and

S
K 3 -::l P[Each node of e has at least one exposed neighbor]
B, <
X = (1-(1 —_-:’;)“")2 = (d- 1)-;1)2. (3.2.5)
,::_ B Approximations (3.2.3) and (3.2.5) and the assumption that q and % are small imply that
’ . most of the edges e of B are such that e is the only matchable edge relative to M — e. Hence, if e
o
AU € B then M - e is likely to be of type s(i-1,1). Approximations (3.2.4) and (3.2.5) imply that
Q8
N most of the edges € of A are such that the set of matchable edges relative to M-e is a path of
L
* ‘ length three. Therefore, if e € A then M —e is likely to be of type s(i-1,2). Approximation
- r (3.2.5) implies that |A| is approximately (q(d-1)/n)?2|M|. Since B = M - A, we approximate |B|
::; by [1-(q(d~l)/n)2]lMl. Based on these approximations, we let pG,0:i-1,2) =
-
(™ — -
min{1,(q(d=1yn?}iELEYT) and pi,05i-1,1) = max (0,1~(q(d—1y/my?}i 2RI

v " m

R

- Py

q,

Sl

-f.
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We will now discuss the transitions out of s(i,1), which is the state that corresponds to
';'.j.- matchings of size i that have exactly one matchable edge relative to it. Fore = (u, v] é M, H, is
the set of edges [v’, v'] in M such that v’ or v” is adjacent to one of u or v. Let U, be the set of

all nodes such that there is a path of length at most four from v to a node of e. The following

Ry

- assumption is consistent with the assumption that 4 and q are small. We assume that the sub-
o !
graph induced by U, is a tree, and all nodes in U, except the nodes of e, are matched. Under
o9
"". these assumptions, an edge e” € M is such that M-e’ is an s(i-1,2)-type matching if and only if e €
-1 H, (see Figure 3.2.3 for an example of H, under these assumptions). We expect that if ¢’ € H,
L

-~ then the set edges matchable relative to M — e” would be a path of length three. Since we assume

q and % are small, we also expect that most edges ¢’ € M ~ H, are such that the set of edges

P

O
ATy ]y

4

’
Fu's,

-

REEL LEREFRALR

Figure 3.2.3. In this example, the matched edges are bold and H, = {e}, e,, €3, €4}.
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matchable relative to M ~ ¢’ are two disjoint edges. Therefore, we assume that if ¢ =M ~ H,
then M - ¢’ is an s(i-1,3)-type matching. Since |H,.[ is the sum of the degrees of the nodes of e
minus two, we approximate it with 2(d ~ 1). Based on these approximations, we let p(i,1:i-1,2) =

DRCELA) exp-1m) and paiiir1,3) = DERIOSHED) ey )

We now tum to determining a value of T that will make (3.2.1) small. Let

D(j) = min{k: Y, = s(j+1,0) or s(j~1,0)},
A1 = P[Ypg) = 5(G+1,0) | Yo = sG.0)],
and
Ajj-1 = P[Ypg = 5G-1,0) | Yo = sG.0) = 1~Aj4n.

We will approximate (3.2.1) by

E(min{k 2 0: Y, = s( L% 1.0} Yo =s@.1)], (32.6)
which is equal to
L34 \ LIS
Y EDG)|Ye = sG.0)] o > II (Agxi/Acksl)
2 B kel
Fh
+EDM[Ye=s(10)] T TI Acxct/Axer) + m, 327
k=2

where IJ'[ MO=1L

k=j+1
To prevent (3.2.7) from being exponential in n, we want T to be such that A;;_)/A, Ms-% for
s L%J-l- Then (3.2.7) is at most
1541
3 T ED®|Ye=sG0) +m. (3.2.8)
=2

It can be shown that if 2 €i L-;-J - 1 then A;,_i/A,,,; equals

e M e e % e Pe Tl e e e e e e aT
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g 1 0 B
S <(d—_1)’(‘—n_2i—))z(d—1>exp<-1m§
< dl_zl-cxp(-lm-;-.
Thus, if T satisfies (drfl)exp(—ln')%s 1 then A;;\/Ajjy; S —;— for2sis L-%J - 1. Although we
want T to satisfy K d'_‘_zl)exp(—ln‘)-g-SI we do not want T to be too small, otherwise

E[D()|Yq = s(i,0)] will become very large. Hence, a value of T that makes (3.2.7) small is one

where

exp(-1/T) = c-(d—-zl)-.
n

and c is a constant £ 1.5. If (Y,: k 2 0) is an accurate approximation of (Xy: k 2 0) then such a

value of T will also make (3.2.1) small.

We now tum to evaluating E[D(i)]Yq = s(i,0)]. The exact expression for E[D(i)| Y, = s(i,0))

is complicated, so we will approximate it with

1.5m
. d-1 o2vs
exp(=1/T)min{ l'(T(D-Zl)) H

3.2.9)

This is an accurate approximation if T is very small. Using Approximation (3.2.9), we get the fol-
lowing approximation for (3.2.8):

n

13- |

4.5m [exp(1T) ¥ 1 +m
=2 min{l,(-—;—(n—Zi))z}i

n

I3 13-
! =2 i(—; (n-2i))?

=2

L
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2 F“ a
2 1z | Sin
= (4.5 1) |1
AR (80 * @7 | & war T3, w2y
n*a*»
2 rl%] 1 1 151 1
< (4.5m)exp(1/T) |logn) + s |2 5 + )
L @-1) Li-z 2(n4)) IL_‘Gl J+1 (et (n=2i)
( 2 (e 621
= (4.5 1T |1 — | S +=I—=
(4-3m)exp(1/T) Log(n) ¥ @-1)* |2n? * ng{ 4i2]]
5 n
< @45 1 + =
(4.5m)exp(1/T)(log(n) + = (d—1)2)
_ 9 n?
= —8-exp(l,’l')(2dnlog(n) + 57). (3.2.10)

Finally, if exp(-1/T) < 1.5{452 then Expression (3.2.10) is our estimate of (3.2.1). Note that
n

2
E[DX( I_%_]-—l)h’o = 5( L-‘zlj—l),on 2 l—lzexp(ll'I')-(dTnml)? = 2—14exp(l/T)-I:i—. Thus, if (Y,: k 2 0) is

a good approximation for (X;: k20)and d = o((n/logn)o's) then (Xi: k 2 0) will be such that for a
large portion of its time before it visits a maximum matching it will be in near maximum match-

ings. This is consistent with one of our assumptions used to define (Y;: k 2 0).
If ¢ is a constant such that ¢ £ 1.5 and exp(-1/T) = cg_—zl-)-. then (3.2.10) will be approxi-
n

mately

45 n*
e 3G2.11)

Therefore, if (Y,: k 2 0) is a good approximation of (X,: k 2 0), then (3.2.11) is an upper bound

9 4
) 1 | +
n’log(n)

on (3.2.1) for almc * every graph.
We now tum to approximating (3.2.2). Recall that (?k: k 2 0) is the limit in distribution of
(Y k 20) as T—0, where J(0) =0 and. for k 2 0, J(k+1) = min{j 2 J(k): Y, # Yjq,}. Let

=0 and g =min{j20:Y,=sk0)}. It is straighfornand 10 show that




- on e
P WS &b A

=

s

&‘l...,‘.

>

- e

S D b R

L N )

Tata e w

52
Elt1—t | Yo = s(0,1)] =3max{(m)2 j+1. Then
124t .
E[min(j 2 0:Y; -<L—-J 0} Yo =s0.1)] = 3 ?_:1 [max{(m)z,1}+l]+l
<3 Lo (32.12)

< =(
2 @1y
Finally, we will use (3.2.12) as our approximation for (3.2.2). If (Y,: k 2 0) is a good approxima-

tion of (Xi: k 2 0) then (3.2.12) is an upper bound on (3.2.2) for almost every graph. Note that

E{t, =t ., =50,1)] 2 = 2 4 1. If our approximations are correct then (X,: k 2 0)
[L%J L_Z_J_ll ©.1) 4((d ) PP X

will spend a large portion of its time in near maximum matchings before finding a maximum

matching.

3.3. Experimental Results

In this section, we will experimentally evaluate how well (Y,: k 2 0) approximates
(Xi: k 2 0) and how well (Yk: k 2 0) approximates (5(k: k 2 0). First, we will focus on evaluating
the accuracy of (Y,: k 2 0). We check the accuracy of (Y,: k 2 0) by using it to predict the sam-
ple means and sample standard deviations of J = min(j: X; is maximum} and * =1_. - t_._,, where
m’ is the size of the largest matching and 1, = min{j: |X;[=k}). Recall that G(n.m) is the set of all
graphs with node set {1, 2, ... .n} and m edges. If (Y,: k 2 0) is an accurate approximation of

(X,: k 2 0) then for most graphs in G(n,m) the mean of J will be (3.2.12) and the mean of t will

. . . . n 2
be approximately Eft , -1t Y, = s(0,1)], which is approximatel —(-—) if n is even.
PP Y Ell) L%J_ll 0 PP Y 3G

We collected data from simulations of (X,: k 2 0) as follows. For each § € (0, 0.25. 0.5,
0.75. 1.0}, we let m = |con'3]. where ¢, = 80(32)™"*9, and we considered five values of n: 32,

~4, 128, 256, and S12. For each (8.n) pair, we randomly and without bias sclected one hundred
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graphs from G(n,m) with replacement. For each graph, we simulated (X,: k 2 0) once. From
these one hundred simulations we computed the sample mean m(J) and standard deviation o(J) of
7, and we computed the sample mean m(%) and standard deviation o(t) of 1. Note that m() (resp.,
m(t)) is an estimate of the mean of (3.2.2) (resp., E[t| X, = @)) over all graphs of G(n,m). The

sample means and standard deviations are given in the tables in Figure 3.3.1. These tables also

contain the values of (3.2.12), which are listed under a(J), and the values of %(-(d—ni-)-)z. which are

listed under a(%).
Note that the m(?) is at least a half of m(J), which is consistent with our prediction that

(X,: k = 0) will spend a large portion of its time in near maximnum matchings.

We estimate the rate at which m(t) and m(J) grow with n using the following procedure.

First, for each 9, we find an argument (a(t),p(%)) of

min > (ogim-log(e®n®)?,

@B 1a32,64,128256,512
where t(n) = m(t) for the graphs with n nodes. In this sense, for the value of 8, e*®nP® is the
"best-fit" curve to values of m(t) as a function of n. Similarly, we find a pair (a(¥),3(3)) for
values of m(J). The values of (a(t).p(t)) and (a().8(J)) are presented in Table 3.3.1. If
(Y,: k 2 0) is an accurate estimate of (X,: k 2 0) we would expect (%) to be approximately equal

to 2(1-8) and B(J) to be approximately equal to max{2-28,1}. We also list the values of

max{2-28,1} (resp., 2(1~8)) under BUJ") (resp., B(z")).

Table 3.3.1 shows that our predictions, (3.2.12) and i( n )2. tend to be more accurate for

4 (@d-1)

sparse graphs. This is not surprising, since our approximations were based on the assumption of a

sparse graph. In addition, our predictions seem to be asymptotic upper bounds of the sample

means.
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e Figure 3.3.1. Tables of sample means m(t) and_m(j); sample standard deviation oY) and oy,
Tf-::} and our esumate at) (resp., acJ)) of t (resp., J). based on the approximation (Y,: k 2 0) of
f-‘f::; "Xy k 2 0r The graphs considered have n nodes and m = chn“‘sj edges.
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Table 3.3.1. Function e®®nP® of n is the best-fit curve of m(t) (resp., m(3)) as a function of n.
The value of B(t") (resp., BJ")) is the estimate of B(t) (resp., B(3)) based on the approximation
(Yk: k2 0) of (Xk: k2 0).

8 ad) B BdY act) ) B(x)
0.00 -1.22 1.91 2.00 -1.16 1.82 2.00
0.25 0.73 1.33 1.50 0.69 1.26 1.50
0.50 2.52 0.80 1.00 2.64 0.69 1.00
0.75 3.75 0.42 1.00 4.25 0.21 0.50
1.00 4.15 0.24 1.00 5.51 -0.21 0.00

In Figure 3.3.2, we have three graphs, corresponding to & = 0, 0.5, 1.0. In each graph, we

plot m(), e*®nf®, and (3.2.12) versus n corresponding to the particular value of & for that graph.

In Figure 3.3.3, we plot three graphs of m(t), e>®nP®, and 3 (0

)* versus n for & equal 0 0,
4 (d-1)

0.5, 1.0. In these graphs, the best-fit curves approximate the sample mean data fairly accurately,

except for the curve approximating m({J) when 8§ = 0. These graphs also indicate that (3.2.12)

(resp.. %(Tdf—l))z) is an asymptotic upper bound on m(J) (resp., m(t)).

Next we will determine how accurately (Y,: k 2 0) approximates (X,: k 2 0) when exp(—1/T)

1s approximately %-(kzll We check the accuracy of (Y,: k 2 0) by using it to predict the sample
n

mcans and the sample standard deviations of T = min(k: X, is maximum}. If (Y,:k 2 0) is an

accurate approximation of (X,: k 2 0), then for most graphs in G(n,m) the mean of T will be

4
bounded above by (3.2.10). which is approximately 3n’logn + 7.5—33.
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:_ . For the values of n we considered, T can be quite large, because the value of T we used was
N
gg; so small that for a large portion of the time (X;: k 2 0) would be sitting in maximal matchings.
:; To be more computationally efficient in estimating the mean of T we do the following. First, set a
- regiser 1 to zero. Then simulate the process (Xjq) k20), where J(0)=0 and
\ J(k+1) = min{j 2 J(k):X; # X;q,}. For every value of k 2 0, we increment [ by —n__
Ry %+ 1 X0
; . where ¥, is the number of edges that are matchable relative to Xjqy. When (Xjq): k 2 0) reaches a
E‘:'j maximum matching we stop the simulation and { is our estimate of 1.
Ry
f We computed sample means of I in the same way we computed sample means of J and %,
o i.e., for each value of n and 6, 100 graphs were randomly selected from G(n,m), and, for each
', graph, a simulation of (Xjq): k 2 0) was done and statistics were taken. The sample mean m(f)
‘ . and the sample standard deviation o(f) of 1 are given in the tables in Figure 3.3.4. Note that m({)
e

is an estimate of the mean of (3.2.1) over all graphs of G(n,m). Also listed in the tables, under

‘. 4

a(D), is the value of 3n’logn + 7.5%2-. We also compute the pair (o(I),p(1)) for the best-fit curve

_::: e2DpB® of the values of m(f) as a function of . The (a(D).B(f)) values are given in Table 3.3.2.
__( If (Y k20) is an accurate approximation of (X: k 2 0) then B(f) should be approximately
.:'.. max{3,4-28}. Included in Table 3.3.2 are the values of max{3,4-28), which are listed under
:?_' B(I"). Just as in the analysis of the rate of growth of J and %, our predictions for 1 tend to be more
:'.'_'-: accurate for sparse graphs.

o

.; Note that f(I) - B(J) is approximately 2 for small values of 8 (B(i) - BJd) = 2.1, 1.9, 1.9,
Z; 1.7, and 1.4 for & equal to 0, 0.25, 0.50, 0.75, and 1.0, respectively). To see why this is so,
:‘\.{ observe that our choice of T is small so that the process (Xjq): k 2 0) behaves like the process
}Ej (X,: k 2 0). Therefore. the sample mean of I should be approximately the sample mean of J times

:5 the average value of J(k+1) — J(k) over k such that 0 S k £ k" and J(k*) = I. Since T is small, this
N
hdy
o T R e S e S R R S
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Ny
, 8 = 0.00
oo T, ; D o )
IOCL 32 80 1.860405 2.17¢+05 6.55¢+05
- 64 160 2.78e+06 2.966+06 8.30¢+06
[0 . 128 320 5.04¢+07 4.02¢+07 1.11¢+08
b 256 640 6.346+08 4.68¢+08 1.57e+09
AL 512 1280 1.20e+10 1.30e+10 2.31e+10
, - r
P § =025
Ko n m m() o) ah
32 80 1.866+05 2.17e+05 6.55¢+0S
a2 64 190 1.96¢+06 1.82e+06 6.84¢+06
AE] 128 452 1.77e+07 1.40e+07 7.09¢+07
o 256 1076 1.67+08 1.13¢+08 7.35¢+08
s 512 2560 1.71e+09 1.27e+09 7.67e+09
1': :4
b LS
$ 5=0.50
*-:‘ . n m m(h) oh ah)
oy 32 80 1.86+05 2.17e+05 6.55¢405
( &) 64 226 1.17e+06 9.31e+05 5.79¢+06
128 640 7.70e+06 6.57¢+06 5.07e+07
e 256 1810 4.25¢+07 3.18e+07 4.40e+08
- 512 5120 3.33e+08 2.51+08 3.80e+09
/ { 8=075
®) ; n m m) o0 oD
Al 32 80 1.86¢+05 2.17e+05 6.556+05
o 4 269 6.77¢+05 5.30e+05 5.05¢+06
pod 128 905 2.800+06 2006406 4.066+07
NN 256 3044 1326407 9.21e+06 3.36e+08
: Ol 512 10240 7.27e+07 5.10e+07 2.83e+09
AR
ynlloy
s:' §=1.00
n m m® o(h )
- 32 80 1.86e+05 2.17e+05 6.55¢+05
SRS &4 320 4.08¢+05 3.24¢405 4.53¢+06
AN 128 1280 1246406 1.00e+06 3.56e+07
. L 256 ! 5120 4.77e+06 3.72e+06 2.99¢+08
—~ L s j 20480 1.67e+07 1.16¢+07 2.59¢+09
.'f"_:
I'.‘ «
Lo " ~ - -~
o ‘- _Figure 3.3.4. Tables of sample mean m(l); sample standard deviation ¢(I); and our estimate a(I) of
e [, based on approximation (Y,: k 2 0) of (X,: k 2 0). The graphs considered have n nodes and m
S = [con'*?] edges.
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Table 3.3.2. Function e“(Pan) of n is the best-fit curve _of m(]) as a function of n. The value of
B(1") is the estimate of B() based on the approximation (Y,: k 2 0) of (X,: k 2 0).

3 a(l) B(h B(a’)
0.00 -1.67 3.98 4.00
0.25 0.81 3.27 3.50
0.50 2.83 2.68 3.00
0.75 455 2.17 2.50
1.00 6.20 1.65 2.00

average will be roughly the average amount of time (X;: k 2 0) takes 1o leave a maximal matching

that has size proportional to n. This average time is approximately -§-n2. Then

_—m
nexp(—-1/T)
B(I) — B(J) should equal to 2.

. 4
In Figure 3.3.5, we plot three graphs of m(I), e*Dn®  ang 3n’logn + 7.5% versus n for &

equal to 0, 0.5, and 1.0. These graphs indicate that the best-fit curves are accurate approximations

4
of the sample mean versus n. From these graphs it also seems that 3n3logn + 7.5% is an asymp-

totic upper bound for m(f).

We conclude this section with some final remarks. Our experiments show that the process
(Yy: k2 0) is a reasonable approximation of (X,:k 20), and if the graphs are sparse then
(Y k 2 0) 1s an accurate approximation of (X,: k 2 0). This is not surprising, since one of our

underlying assumptions used to define (Y,:k 20) is that the graph is sparse. Note that

(Y,: k 2 0) lcads to estimates that scem to be asymptotic upper bounds on the average amount of
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Figure 3.3.5. Graphs of m(f) (= "Data"), ¢*Pnf® (= "Best-Fit Curve”), and 3n*logn + 7‘5% =
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time (X,: k 20) and (X,: k 2 0) take to find a maximum matching. If the estimates are actual
asymptotic upper bounds then for almost every graph (3.2.11) is an upper bound for (3.2.1) if ¢ <
1.5. Note that if d is bounded below by one then (3.2.11) is O(n‘). Also note that the sample
mean of % is at least half the sample mean of J. This is experimental evidence which helps to jus-
tify another of our assumptions used in defining (Y,: k 2 0): the number of exposed nodes is

small.

3.4. Conclusions

In the previous chapter, we presented results which showed that solving the matching prob-
lem by the basic simulated annealing algorithm of Section 2.1.2 takes average time that is
exponential in the size of the instance. In addition, we also showed that to find a near maximum
matching only takes average time that is polynomial in the size of the instance. In this chapter, we
found an estimate (3.2.10) of a small upper bound on the average amount of time the basic simu-
lated annealing algorithm takes to find a maximum matching for typical graphs with n nodes and m
edges. If m 2 n then (3.2.10) is O(n*). We checked this estimate with data from simulations and it

seems that this estimate is an asymptotic upper bound.

An important reason why we were able to analyze the performance of simulated annealing for
the matching problem on "typical" graphs was that we were able to approximate the annealing pro-
cess (X;: k 2 0) by a process (Y,: k 2 0) that was quite homogeneous. In Section 4.2, we present

a method of generating homogeneous, easy-to-analyze annealing processes.
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0
hg THE TEMPLATE METHOD, THE THRESHOLD RANDOM SEARCH ALGORITHM,
M AND THE NONMONOTONICITY OF OPTIMAL TEMPERATURE SCHEDULES
)
(.
N . 4.1. Introduction
A
b In this chapter, a collection of miscellaneous results is presented. In Section 4.2, we give a
- simple technique, called the template method, that produces easy-to-analyze annealing processes.
- 7
. A random search algorithm, which we refer 1o as the threshold random search algorithm is
:_‘, presented in Section 4.3. The algorithm is a generalization of simulated annealing. In Section 4.4,
(H
’ sets of conditions are given under which no monotone decreasing temperature schedule is optimal.
‘o
.; ) 4.2. The Template Method
&
{ E In Chapters 2 and 3, bounds and estimates on the average amount of time simulated anneal-
[)
o
- -3-’ ing takes to solve the matching problem were derived. However, we do not know of any other

(NS

s
. & A

nontrivial combinatorial optimization problems amenable to such analysis. One of the reasons why

v ' simulated annealing applied to solving the matching problem could be analyzed is that there is a
'O
; ::: great deal of homogeneity in the annealing process.
I
In this section, a simple method we call the remplate method will be given that produces
o
Do annealing processes that have a great deal of homogeneity and, as a result, are easy to analyze.
- The annealing processes produced by the template method are homogeneous so that the states can
i
be classified into a relatively small number of types of states. In addition, for any state s and type
\ «, the transition probability from s to some state of type a that has cost & larger than the cost of s
. is dependent only on «, §, the type of s, and the temperature schedule. Our hope is that the use of
L2 b
v this method will produce interesting annealing processes that will help us to better understand the
£
g
b2 :”,:: simulated annealing heuristic. We will begin by presenting this method and then give three exam-
N
iy
q r
j .
D T A L e Ly N R N A T
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ples of its use.

For the template method, we need a finite (preferably small) set S° of state types, a sct A of
real numbers (corresponding to changes in cost of the states), and a transition probability matrix R®
from states in S° to states in S°xA° = {(s,9): se S°, de A°}. We will also require the following con-

dition on R°. Let Q™ be the probability transition matrix over S° such that

¥ RS sexp(-max(0,8}/T)
sea® ifszs
Qs = 1 - ZQu if s=5"
Lag
We assume that for each T > 0, the Markov chain, which has states S° and transition probability
matrix Q™ is irreducible and, therefore, ergodic. Then this Markov chain has a limiting distribu-

tion ' on S° which we can compute by solving the system of linear equations Q™ = =™

We call the inple (S°,A°.R) the template system, and we call

> ﬂ,m 38Ry sexp(-max (0,8)/T)
s §° (s".B)e S%xA°

the average drift of the template system (S°A°,R°) for temperature T.

The following is one interpretation of the average drift of the template system. Let a set of
states ST, a cost ¢™ on S%, and a transition probability matrix R™ over ST be defined as follows.
The set S™ is the set of all finite sequences of the form [(sg,8¢), (51.01), . . . . (5,.6,)], where n 2 0,
and s, € S®and §, € A°forallisuchthat 0<isn Letae ST and let (s,3) be the last pair in

the sequence o. Then say o is a state of type s. The cost ¢~ of a sequence

n
((s0:00). (51.81)s . . . Spdp)] is zeroif n =0 and is 375, if n 2 1. The matrix R™ is such that
=l

- RY& if ais a state of type i and o’=a1(}.8)
Raa = o otherwise,
where o1(j,8) is the sequence formed by appending (j,8) to the sequence &

T A R
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o
o . Let (X,: k20) be an annealing process on the system (S”.c",R™) and with a temperature
__.: schedule that has all of its temperature values equal to T. Then it is easy to sece that
SYRN
:'_f:: lim E{(c™ (X <" (Xp))/k] is equal to the average drift of the template system for temperature T.
LA k—se
o
»)
e (" A simple example of a template system (S°A°R°) is when S° = (A,B}, A® = {-1,1}, and R®
SR
AN
- is such that
N
' r
y - 12 ifi=A,je {(A,B},and d=1
SO . J17 ifi=B,j=A andd=1
Y Ru®= Y12 ifi=B,j=B, and §=-1
:5 0  otherwise .
g “ §
‘_; A state diagram of the system (S%.c™.R%) is partally presented in Figure 4.2.1. Each node
*;_:
.','::- corresponds to a state of ST and inside each node is the type of the state. The cost ¢” of the states
g
SR
( - 6 is indicated on the left of the figure. An arrow from a state i to a state j indicates that R, = %
::ﬁ; Another example of a template system is given by S° = {012}, A° =
R (-2x10°,-2x10%,10%,10%,10%,10%}, and the matrix R®, which is defined by
t
o] .. ,
2 14 if i=0, (.8)e ((1.109).(0.10.,(2.10%.(0.10%)
o - b
gi[- . R <1 if i=1, j=0, and § = -2x10*
o 68 711 ifi=2, j=0, and & = -2x10°
L ‘.. O .
G \ otherwise
",
:;2-: ) The avcrage drift for the template system (S°,A°R®) is
o
WO
_loze-lolrr + 10%710YT _ 1% 10T 4 10Be10%T
NN 4 + e-100T 4 o109 '
0w
\ "3-.' N Note that this average drift is not unimodal in T. The implicaton is that we cannot guarantee that
SN
" - an iterative descent method will find a value of T that will minimize the average dnift.
- -
-
"'/ From this result we can also conclude that the average amount of time the folowing finute
e
:;_ state annealing process takes to find an optimal solution is nor unimodal as a function of
e
s
o .7
.'.'f
i:' ;A -;".;, -.;v "-:‘: -:,'~ MO L J'W';". ------- :!.:vf::-’::’} ."\.f?"»:_‘.;:f—.:'--;’.-;’-‘:".\:.ﬁ'f
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Figure 4.2.1. A partial sute diagram of (S”.c”,R™) when S° = (A, B}, A° = {-1, 1}, and R® is

such that

(
12
172
172

0

ifi=A,je (A,B},and 6=1
ifi=B,j=A,and 6 =1
ifi=B,j=B,and § = -1
otherwise
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"" . temperature. Let S be the set of all pairs of integers (ij) such thatie (0. 1,2} and je (O, 1. .
_.: , 10"}, Let c((iy) = j, and let R be a transition probability matrix R over S such that if
L
N (i1d1) # (i2d2) then l
o
) (L . | |
i L. va ifiy =0, j2 S 101% and (izj) € ((0;+10%, (04, +10%)
0 U4 if1,=0,j, S 10'% and (i2.jp) € {(14,+10%). (24,+10%}
: Reyiwy = {1 ifiy =1, j; 20, and (iz.p) = (04,-2x10%)
i 1 if i) = 2, j; 2 0, and (i5.jp) = (04,-2x10%
:: :E LO otherwise,
a:; n
~
® R(HJx)(ildx) = 1- _ 2 ) R(ilJl)(inz)'
y v (‘zJ))’(HJ])
j , Then the annealing process (X,: k 2 0) on system (S, ¢, R) and with a temperature schedule that
'Z-:; has all of its values equal to T is such that E[min(k : c(X,) is of minimum value}|Xy = (0,10'%))

1s well approximated by 10'% divided by the magnitude of the average drift of the template sys-

tem (S°A°R® with temperature T if this average drift is negative. Hence, E[min{k: ¢(X,) is of

o minimum value} | Xq = (0,10'%)] is not a unimodal function of T, as stated earlier.
L
::-Zj Before presenting the third and final example of a template system we give some useful
::j:f = definitons. Suppose 3 is a set, ¢ is a cost on S, and R is a transition probability matrix over S.
» - ‘e
D ™
A, We say that state 1 is reachable at height E from state j if there is a sequence of states j = 1(0),
Qf‘_} A wlhy, ..., 1(p) =1 such that R4,y > 0 for 0 < k < p and c(i(k)) SE for 0 < k < p. State s is
A
- said 10 be a local minimum if no state s’ with c(s”) < c(s) is reachable from s at height c(s). We
o define the depth of a local minimum s to be plus infinity if s is a global minimum. Otherwise, the
~:.'::: depth of s is the smallest number E > 0, such that some state s’, such that c(s") < c(s), can be
O reached from s at height c(s) + E.
-
“& ~ For our third example, let n, A, ¢, and D be positive integers, where A <n+ 1 and
e %
L
o 0 <2+n LetS°=(0.1..,D}, A° = {-1,1], and R® be such that
L
@4
"
\:,
L e A 3 N . o S (E o 0 7
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(An if i < D and (j.8) = (i+1,1)
I/n if i >0 and (§.8) = (i-1.-1)
1-A/n if1=0and (j,§) = (1,0
0 4]—(l«i-l)/n if0<i<D,and (,8) = (1,0)
R6® = Yim if i = D and (j.8) = (D.~1)
on ifi = D and (j.8) = (D.1)
1-2+¢¥n ifi =D and (j.§) = (D.0)
(] otherwise.
The average drift of the template system for the temperature T is
(exp(=1AP 1
—[=1 + exp(~1/T)¢).
Pt ] 4210

D n
2(exp(=1/THAY
0

The motivation for our third example is that the average dnift is approximately inversely pro-
poruonal to the average amount of time a firuze state annealing process (X: k 2 0), on the follow-
ing svstem (S,c.R), takes 0 find a minimum valued solution. As we shall see, the average amount
of ume (X, k 2 0) takes to find a minimum valued solution is dependent on the density of states,
density of states around local minima, and the depth of local minima of the annealing process.
Suppose D << 10'% and let S be the set of all quadruples of integers (ij.dk), where
0<1<10'™, 0<sj<9.0sdsD, and 0Sk <A% Let ¢ be a cost function on S such that
ciijdkn =1 +d Let G be any graph with node set S and edge set E that has properties (o be

specified later. Let R be a symmetric transition probability matrix on S such that

1/n ifs#s and [ss') € E
ifs#s and [ss'] ¢ E .
1 - YR, ifs=¢

jxs

[=2 ]

Rss'

We will now present the properues of G. Sct S can be parntitioned into subscts Ti(i,) of

nodes for i and ) such that 0 <1< 10'% and 0 € j < ¢', where T(,)) = {¢i,).dk) 0<d <Dand 0

IA

ko< 22y

The subgraph of G induced by subset T(i,j) is a completely-balanced. Aary tree of

height D and has root (i.),0,0), (see (18] for the definition of a tree, a root of a tree, a leaf of a

-
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. . tree, and the distance between nodes on a tree). Also, for each 1 and ). all nodes (1).d,k) are at
distance d away from root (i,J,0,0). Note that ¢((1,),d.k)) = d + ¢((i;.0.0)). In Figure 422 an
example of a subgraph induced by T(i,j) is given as well as the cost of the nodes. For all 1 and j,
" | the only nodes of T(i,j) that have neighboring nodes not 1n T(ij) are the leaves of the subgraph

induced by T(i,j). Note that each node (i,J,D.k) is a leaf of the tree induced by subset T(iy) If1<

3:.' . 10'% (respectively, i = 10'%) then the nodes of the set {(i+1J.Dk): A(-1) S j < Ay} (respectively,
.- ©) are the only nodes that are neighbors of leaf (i,j,Dk) such that each node is in a subset of T(i )
:ZZf for some i 2 i and (i,j) # (i,j). Hence, the edges of E are such that the leaves of the tree induced
N _ by T(i.j) are paired with the leaves of the tree induced by T(i+1,j) where j is such that A(j-1) € ) <
= ;

" 43 Note that the graph

,.
<, Cost of
. :; node

._ i+ 2
- (. i+ 1

i

} - . -
" Figure 4.2.2. The subgraph induced by Triy) when D=2 and A = 3
.
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induced by contracting subset T(ij) nto a node for each i, j is a completely balanced ary tree.

The edges between the induced trees T(1,j) are illustrated in Figure 4.2.3.

Let (X, k 2 0) be the annealing process on system (S.c,R) with tcmperafure schedule
(Ty: k2 0 such that T, = T. Thus implies that if (4.2.1) is negative then the average amount of
ume it kes the annealing process 0 find a mimmum valued solution given Xq = (10'%,0,0,0) is
approximately 10'® divided by the magnitude of (4.2.1), as we stated earlier. Note that ¢ is the
rate at whuch the density of states of (X,: k 2 0) is increasing with cost, D is the depth of all the
local miruma. and A is the rate at which the density of states close 10 a local minima is increasing

with cost.

Figure 4.2.3. Pant of the graph G when ¢ = 2. The tnangles are trees induced by subsets T
Arrows between two trees mean that the leaves of the two trees are paired
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To keep (4.2.1) small one can set exp(-1/T) = ?15 Then (4.2.1) becomes
(2
-1
n _D_?l— 422
Z(

If ¢ << A then (4.2.2) is approximately —2'% If ¢ >> A then (4.2.2) is approximately — ()\/24’)‘)l

Hence, if ¢ >> A, the value of D strongly influences the average amount of time (X;: k 2 0) takes
to find 2 minimum valued state. If ¢ >> A then the average drift goes (0 zero exponentially as D
increases and, therefore, the average amount of time (X,: k 2 0) takes to find 2 minimum valued

state grows exponentially as D increases.

We believe that for typical annealing processes, states around local minima that have cost
much higher than the cost of the global minima corresponds to the situation where A > ¢. If this 1s
true then the depth of local minima will not be so important to the drift of the annealing process

until the process is in a near optimal state.

4.3. The Threshold Random Search Algorithm

The threshold random search algorithm is used to solve combinatorial optimizaton problems:
min{c(s): s € S},

where S 1s a finte set of states and ¢ is a cost function of S. Just as with simulated annealing, the

threshold random search algonthm requires a transition probability matrix R over S. In addition, a

sequence of positive random vanables (t,: k20), we call the threshold schedule, is needed. The

threshold random search algonthm generates a sequence of states (X : k20) as follows. An imitial

state X 15 chosen from S. Given that X, = s, a potenual new state Y, is chosen from S with pro-

bability distnbution P{Y, = 5" | X = 5] = R,,;. Then we sct

......
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X Yi if c(Yy) - c(Xy) S i
o Xior = Xy otherwise.
o If 1, = -T,log(Up), where (T,: k20) is a temperature schedule and (U,: k20) is a sequence of
independent random variables distributed uniformly over the interval (0,1} then
\
o | | R, exp(-max{0.c() - c(DITY) ifi = j
o P =J1Xc=11= | _ 3 pix,,, = h|X, = il otherwise.
L hay
Thus. for tus threshold schedule the threshold random search algorithm is equivalent to simulated
'_ii—'\‘ annealing.
v Let (X" : k 2 0) be the process generated by the threshold random search algorithm with
Y
ﬁj:'." threshold schedule t. It can be shown that there exists a threshold schedule that minimizes
5:.‘_; E minik. c(X;") S y}]. More generally, as we shall see in the next corollary. it can be shown that
J_‘.._ there exists a threshold schedule that minimizes F, where F(t) = [T (X, . . ., X)), for some
-..:-_ 1=()
\' nonnegauve functions . Note that if f(xg, - - .x) = LX) > yfor all s such tat 0 5 j s 1) then F(1) =
S
o
J E'minik oX\") < ).
N
I\‘l‘
Lot The corollary is implied by the next proposiion and the following simple observation: for
s
e
"- "-
e every threshold schedule t, there is a sample path t” of t such that F(t) 2 F(1"). Therefore, when
"'“‘ searchung for threshold schedules that minimize F we can restrict our attention to deterministic
d_:'_; anes  Without loss of generality we will onrly consider deterministic threshold schedules (1,: k>0),
"
o
= ahere tp € A forall k 20.and A = {cp) —ci): ije S. R, >0, and c() > eV (0] Let A be
: : the set of such kinds of determinisuc threshold schedules.
v
S Proposiion 4 31 The funcuional F 1s mimimized on A,
-
n
o
.
N
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Proof: 1t is straightforward to show that A is compact with respect to the distance metric

8((t,: k20),(s,: k20)) = F27*|t,~s, |.
k20 .
We will now show that F is lower semicontinuous on A, which will complete the proof. Since A
is finite and E[fF(X0, X, ..., XM)] depends only on the first k + 1 elements of the sequence t,

E(fOXP.XD,... XM is continuous on A. Thus, F is lower semicontinuous because it is the sum

of a collection of nonnegative continuous functions.

Corollary 4.3.1: There is a deterministic threshold schedule that minimizes F.

Remark. A simulated annealing algorithm will typically be outperformed by a threshold ran-
dom search algorithm with some deterministic threshold schedule. However, this is only of
theoretical interest, at this point, since the problem of finding optimal threshold schedules is

difficult.

4.4. The Normonotonicity of Optimal Temperature Schedules

Most analytical studies of simulated annealing consider only monotone decreasing tempera-
wure schedules. This is not surprising, since the purpose of the heuristic is to simulate an "anneal-
ing" process. In this section, we present sets of conditions under which no monotone decreasing
temperature schedule is optimal. We will focus on the basic simulated annealing algorithm in Sub-
section 2.1.2, which is used to solve the matching problem for a graph G. Let (S, ¢, R) be as in
Subsection 2.1.2, and let (XP: k=0) be the annealing process with temperature schedule T, where

XT=0. The following proposition contains the main results of this section.

Proposition 4.4.1: Suppose there is a maximal but not maximum matching M of G such that

M} €m. Then
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(a) there is a temperature schedule T that minimizes
E{min{k: |X{"|>m}], (4.4.1)
and for every J 2 O there is temperature schedule T’ that minimizes
P{|XfD|>m]; (44.2)

(b) there is a monotone decreasing temperature schedule T that minimizes (4.4.1) if and only if
the infinity-valued temperature schedule (i.e., T, = = for all k) minimizes (4.4.1); and (c) there is
a J such that if J 2 J then there is no monotone decreasing temperature schedule that minimizes

(4.4.2).

Remark: If G is a single path consisting of 2n+1 nodes, m = 0.9n and n is sufficiently large,
then the infinity-valued temperature schedule does not minimize (4.4.1). To see this, observe that
by Theorem 2.3.1 there is a temperature schedule such that (4.4.1) is O(n5). Now suppose that T
is the infinity-valued temperature schedule. If a matching M of G is such that {M| > 0.75n, then
the number of matchable edges relative to M is at most 0.5n. The implication is that the ratio of
M| over the number of matchable edges relative to M is at least 0.6 and, hence, since T is the
infinity-valued temperature schedule, P[|Xminix » i: x, = x;) I<IM|| X;=M] 2 0.6. Then it is straight-
forward to show that (4.4.1) grows exponentially with n. Therefore, for this graph G, none of the

optimal temperature schedules are monotons decreasing if n is large enough.

To prove the proposition we will use the next lemma, which may be interesting in its own
right. In the lemma we refer to a process ({’km k 2 0), which is a more general form of the pro-

cess (ka: k 2 0). We also refer to a functional F(T) of temperature schedule T, where F(T) =

E YO, .Xjn))] and f9 is nonnegative. If (X{D: k > 0), is equal to (X{: k 2 0) then

=)

oth (4.4.1) and (4.4.2) have the form of F(T).

Lemma 441 Let S be a set of states, let T be a cost on that set, and let R be a transition

~umi.i matnx over S such that if Ry > 0 and 2(j) > 2(i) then 2(j) = T = 1. Let (X : k 2 0)
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be the annealing process on (S,%, R), with temperature schedule T. Let F(T) =

E[T XD, . .. ,5(jm)]. where f® is nonnegative. Then there is a temperature schedule that
=0

minimizes F and is monotone decreasing if and only if there is a temperature schedule (T: k 2 0)

that minimizes F, is monotone decreasing, and Tye {0, =} for all k 2 0.

Remark: If T is a =zero-infinity valued temperature schedule, the annealing process
()'(,f'D : k 2 0) then there is a random threshold search algorithm with a deterministic threshold

schedule that can produce an equivalent process.

Proof of Lemma 4.4.1: The "if' part of the lemma is immediate. We now tum to prove the
"only if" part. Let T = (Ty: k 2 0) be an optimal temperature schedule that is monotone decreas-
ing. For each j 2 -1, we will define a temperature schedule T® = (T9: k>0) inductively as fol-

lows. Let T™Y = T. Foreachj=0,

0 ifk=jand T¥D < o

() = .
T = TGV otherwise,

forall k = 0.
We will now show that F(T9) = F(TU™D), for j 2 0, by the following inductive argument.
Suppose T9" minimizes F and T# V<o, Note that

F(TD) = %SE[Ef(i)(j(éT‘*“’)' . Xi('lﬁ'"))lj(j(w'”) =, j'(jgl""”) = p)
3 i=0

PIXT ™ = BT = alPX™ ) = al,
and the only terms in the expresmon that depend on TV are PIXT"™" =B | X™ = a) for

aBeS. Since R; > 0 and c(j) > c(i) imply c() - c(i) = 1, P[Xmﬂ)) B | )'(er”) = @) equals one
or exp(~1/T%V). Hence, F(T9"Y) has the form A’ + B’exp(-1/T"""), where A’ ani B’ are terms

not dependent on TJ™D. Then it must be that B’ 2 0. because T¢™") minimizes F and T," <.

"J'
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Therefore, F(TY) = A” < A" + B'exp(-UT ) = F(TD) for all j 2 0. By the optimality of T,
F(T9) = F(T) for all j 2 0.

Let T = (T{™: k20) be such that T{™ = oo, if Ty = =, and T{™ = 0, otherwise. Using an
argument similar to the one used in the proof of Proposition 4.3.1, one can show that F is lower

semicontinuous on the set of all temperature schedules under the distance metric

&1s) = Y27 exp(=1/t;) — exp(=1/s)]. Since T is the pointwise limit of T and F(T) = F(T?)
=0

for all positive j, F(T®™) = F(T). Thus, T is optimal, zero-infinity valued, and monotone

decreasing, and we are done.

Proof of Proposition 4.4.1. Part (a) follows from our argument in the proof of Lemma 4.4.1 that F
is lower semicontinuous on the set of all temperature schedules, and the fact that the set of all tem-

perature schedules is compact under the distance metric d.

We now turn to prove part (b). The fact that R is symmetric and, for all i, j € S, there is a
sequence of matchings, i =i(1), i(1), . . ., i(K) = j, such that Rigym+1y > O for all h such that 1 <h
< k, implies that the infinity-valued temperature schedule leads to a finite value for F. Write M =
J {ej. e . ...}, and let My =D, and M; = (e}, €, . . . , &) for all i>0. Since XD =0, for all i
- such that 1 < i < n, Ry_um, > 0, Ryy,, > 0, and M| > [M;], then, for any temperature
schedule T, P(X{Pe (Mo, ...,M,}] > O for all k 2 0. Hence, F is infinite for all monotone
decreasing zero-infinity valued temperature schedules, with the exception of the infinity-valued
temperature schedule. We can then conclude that, the only monotone decreasing zero-infinity
valued temperature schedule that can possibly be optimal is the infinity-valued one. The previous

conclusion and Lemma 4.4.1 imply there is a temperature schedule T that minimizes (4.4.1) and is

R L e T R
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monotone decreasing if and only if the infinity-valued temperature schedule minimizes (4.4.1).

.
Sl

Thus, pant (b) is proved.

o
.“ s,

We will now tum to prove part (¢). Since R is symmetric and for all i, j € —S. there is a

, g AN,

sequence of matchings, i = i(1), i(1), . . ., i(k) = j, such that Riy 441y > O forall hsuch that 1 < h

-
.

. o S

< k, we know that

b
- lim P(X{Pe {(Mg.. . . » M,}]
k—poo
= . . .
LT exists and is strictly positive if T is the infinity-valued temperature schedule. Then there is a J
e TN
L~
o such that
R
T
ijgf P(XPe (Mg, . . ., Mp}1> 0. (4.4.3)
% :\1' Inequality (4.4.3), the fact that M is maximal, and the fact that Ry >0 and M| > [M;], for
. all i such that 1 < i < n, imply that there exists an € > 0 such that mf P[lxml ]>¢ for any

monotone decreasing zero-infinity valued temperature schedule T. However, Geman and Geman

: (4], Hajek [13], among others, have shown that there is a temperature schedule T such that
"
3 tim P{|X™| < m]=0.
N k—ao
) Hence, there is a J such that if J 2 J then no monotone decreasing zero-infinity valued temperature
" o« M
l. -':‘:‘
. schedule minimizes (4.4.2). Then Lemma 4.4.1 implies that there are no monotone decreasing
. “ temperature schedules that are optimal. Part (c) is now proved and we are completely done with
- the proof of the proposition.
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’ CHAPTER 5
i
v s
::,._. OPTIMIZATION WITH EQUALITY CONSTRAINTS
LY
K3~
‘_f:(:‘, 5.1. Optimization with Equality Constraints
,::;:4:: In this chapter, we consider solving the following equality constrained problem (ECP) by
¥
o, simulated annealing.
R
fooat (ECP) minimize f(x)
! -r‘:-:
= subject to x € X, h(x) = 0,
o 3
._-;;:T where X is the set of solutions, f: X—R, and h(x) = (h;(x), hy(x), . . . , h(x))T for some k 2 1.
et
Y .
:,',’:: We can also include inequality constraints in this form, since g(x) < 0 can be written as
Ko
e
({ max{0,2(x)) = 0. A solution x € X is called feasible if h(x) = 0.
As an example, the following optimization version of the Graph Partitioning Problem ([19]
: * can be written as an equality constrained problem. An instance of this problem is a graph (V.E), a
2 K
SN positive integer K, and a set of positive integers 6,,0,, . . . ,0g such that ¥ o; = |V|. We call
Aol k=l
i ]
f-'w (V1.Va, . ... V) a partition of V if each V, is a subset of V, the V; are disjoint, and their union is
£
"' V. The capacity of the partition (V,, ..., Vg is the number of edges [u,v] such that if u e V;
Ca
A
“:',:r: and v e V;theni # j. The problem is to find a partition (V,, ..., Vg) with minimum capacity
pr
_.f and such that |V;| -o;=0fori=1,2,...,K.
;'-; Another optimization problem that can be written as an equality constrained problem is the
l."::’
"';‘.'; optimization version of the Minimum Cut Linear Problem [19]. An instance for this problem is a
oY
i graph (V.E). The problem is to find a mapping ©: V—(1.2, ..., |V|} that will minimize,
N .
SAS

Y
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AN S MEN N,
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, max  |{(uv) € E: =(u) S i< x(V)}|
. q 1si<|V]

S subjectto |[{ve Vin(v)=j}|-1=0forj=1,2,..., |V]

Penalry methods are techniques used to solve equality constrained problems. The basic idea
P of the methods is to substitute some or all of the equality constraints by adding to the cost function

penalty terms that give a high cost to infeasible points. In this section, we will focus on the qua-

. dratic penalty method, which we will describe next, and variations of it. For any scalar c, let us
’: define the augmented Lagrangian function

! & Lo(xA) = f(x) + ATh(x) + %lh(x)lz.

We refer to ¢ as the penalty parameter and to A as the multplier vector (or simply multiplier).
The quadratic penalty method consists of solving a sequence of problems of the form

, X min{L,, (xA): xe X),

" where (A,: k 2 0) is a bounded sequence and (c,: k20) is a penalty parameter sequence such that 0
r < ¢, < Cyyq for all k 2 0, and ¢, —e. For many applications, Ay = 0 for all k 2 0. In this section,
! we consider using a simulated annealing algorithm to minimize the augmented Lagrangian function

i ' for each c,. Since the running time of simulated annealing is typically very long, we will only

! h consider L, (-A,) for k = 0.

f‘. Aragon et al. [20] demonstrated that the quality of solutions produced by the quadratic

AN

‘ < penalty method in conjunction with simulated annealing may be sensitive to the value of the

: ::':: penalty parameter. In their experiments, very large values of ¢ resulted in poor solutions, prob-
‘3 ably, because the annealing process was greatly restricted to what state it could move to. For very
: small values of ¢, the final solution of the simulated annealing algorithm was far from being feasi-
% ble, and their greedy fix-up algorithm was not effective enough to produce good solutions. To find

: \ a good parameter value experimentally may be impractical, since simulated annealing is typically
..

s
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very time consuming. Hence, it is worthwhile to find penalty methods that periorm well over a

wide range of parameter values. We will introduce adaptive penalty methods, which may be

penaity methods of this type.

For the rest of this section, we will describe two adaptive penalty methods and the following
simple hardlimiter penalty method. In Section 5.2, we compare the penalty methods by computer
experiments. For the hardlimiter penalty method, we find an x € X that will minimize f(x) +
p(x,7), where

0 if [x[gy

p(x.y) =
o otherwise,

and v is a nonnegative scalar parameter. Note that if y=0 then minimizing f(x) + p(x,y) is
equivalent to solving the equality constrained problem (ECP).
The two adaptive penalty methods we consider are similar to the quadratic penalty method,

because they both involve minimizing an augmented Lagrangian function, but in the adaptive

methods the multiplier is adaptively and periodically adjusted.

The first adaptive penalty method is inspired by the method of multipliers (see [21]), which is
used in nonlinear programming, and the second method is a slight modification of the first. The
procedure of the method of multipliers is as follows. Let (ci: j2 0) be a positive monotone
increasing sequence. For each j, solve

minimize Lc’,(x.lj)
subject to x € X,

and if x; is an optimal solution then

lj_,.] = lj + th(xj).
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i Note that in practice, in place of x;, we use the solution X; found by the simulated annealing algo-
rithm, which is generally not optimal.

In nonlinear programming applications the method of multipliers has advantégcs over the
g quadratic penalty method. For example, suppose that for the equality constrained problem (ECP)

X =R" f: R">R, h: R">R™, and f, ge C>. In addition, suppose the following assumption holds.
g ppo g8

Assumption (S) [21]: There is a solution x" that is a strict local minimum and a reguiar point

d T of ECP, and f, h € C? on some open sphere centered at x*. Furthermore, x° together with its asso-
ciated Lagrange multiplier vector A" satisfies
r‘ Ty2 .
‘ z' V5(f(x) + A h(x))z > 0,
T
" for all z # 0 with Vh(x")Tz = 0.
( ' From Proposition 2.4 of {21], for any value of A, there exists a ¢> 0 such that if G 2 ¢ then
' x;—x  and A; = A", where x is a locally optimal solution of equality constrained problem and A"
is its corresponding Lagrange multiplier. However, if we fix A; = 0 for all j (corresponding to the
’ quadratic penalty function method) then to insure that x; converges to a locally optimal solution of
;_‘ the equality constrained problem we must have c; — =. This suggests that the method of multi-
; :;»F: pliers may be less sensitive to the values of ¢;, However, c; must still be sufficiently large. For
A r': example, suppose f(x) = —x2, h(x) = x, and X = [-1,1]. If c < 1 then the points i X that minimize
A_ L.(x,A), for any value of A are in {-1,1}, and both -1 and 1 are infeasible solutions.
5
B For the method of multipliers, it may be necessary to minimize a number of augmented
Lagrangian functions. Since we intend to do the minimization by simulated annealing and simu-
¥ lated annealing, typically, takes a long time, this penalty method may be impractical. This
‘ motivates our next penalty method, which we call the dynamic method of multipliers. In this
EE penalty method, simulated annealing is used only once to find the minimum of L.(x,A), and the

i;
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- multiplier A is updated every Z iterations during this run. The update rule for A is
. _ _
S Aew = Agg + ch, where his the average value of h(x) observed since the last time A was updated.
'Jf': Note that A is updated so that h(x) will drift in the direction of zcro. Hence, even if L (.,A) is con-
»,
e cave we have some hope that the final solution will be close to being feasible.
; 'E:jﬁ We list three disadvantages of this method: (1) there is the additional complexity of choosing
_ parameter Z; (2) if Z is small then updating A could be very time consuming; and (3) computing
x h may be time consuming if the number of equality constraints is large. We will set Z equal 1o the
ol _
Z'_:-: maximum number of neighbors a state in the annealing process has, which should be a large
At
): number. This is a somewhat arbitrary choice for Z and is not a general recommendation. Note
_jl}l'_Z that we can set Z to be sufficiently large so that the dynamic method of multipliers reduces to the
P 4-:.-
’ quadratic penalty method. Since our value of Z will typically be a large value, the dynamic
= method of multipliers will be, in a sense, a perturbation of the quadratic penalty method.
Ko
:I;::: The third disadvantage can be eliminated in many cases if hy is updated only when hi(x)
'l.\':
:) changes value or when A; needs to be updated.
o
et
ot 5.2. Experimental Results
o
) In order to compare the different penalty methods of the previous section we applied them to
>
"‘-f o solve the optimization form of the Graph Pantitioning Problem and simulated annealing was used to
-
.
_&f.?-; perform the optimization. Then compuler experiments were done to compare the performance of
iy
2. the methods. We will first discuss the implementation of each penalty method. Then we will
i
LN
Y present and discuss the experimental results.
me
\:\'
.
--‘ The basic form of our implementation of simulated annealing for the penalty methods is
. ::j_ shown in Figure 5.2.1 (p. 84). The algorithm in this figure, as well as all other algorithms
::js:' presented 1n this section, is wnitten in pidgin Algol. We refer the reader to {10] for more details of
l‘;.i:
]
o
o
ot
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pidgin Algol.
The input to the algorithm is a graph (V.E), an integer K, and positive integers

< ,
Gy, O3, ..., O such that ¥ o, = |V|. For this instance of the problem, the set of states is the set

=]
of partions of V. If the quadratic penalty method, the method of multipliers, or the dynamic

method of multipliers is used then the cost of partiton (V,, . .., V) is its capacity plus

K c K 5
T - |[Vih+ ‘EZ(Gi - |[Vib~
=1

=]

If the hardlimiter penalty method is used then the cost of a partition (V,, ..., V) is its capacity
K -~ -

plus ¥ p(ci~-|V.|l.y). Two paritions (V,,...,Vg) and (V,,...,Vg) are neighbors if

=1

K -
SV I-1V,1] =2

=1

The main section of this algonithm is the while loop, which simulates the annealing process,
and the fundamental procedure within the while loop is move( ). Procedure move( ) chooses a ran-
dom neighbor of the current partition, each neighbor being equally likely to be ;:hosen. If the cost
of the neighbor is at most the cost of the current partition then the neighbor is accepted as the new
current partition. Otherwise, it accepts this neighbor as the new current partition with probability
exp(- A/T), and with probability 1 - exp(- A/T) it leaves the current partition as is, where A equals
the cost of the neighbor minus the cost of the current partition. The temperature parameter T is
decreased, by multiplying it by TFACTOR, and it is decreased after every MCLENGTH calls to
move( ). For our experiments, the value of MCLENGTH was chosen to be the number of neigh-

bors a pantition has (=(K-1)|V|). This value of MCLENGTH was used in [22].

After the algorithm decreases T, it checks to see if it should stop simulating the annealing

process. Variable numaccept stores the number of times neighbors were accepted as new current

pantitions since the last time T was decreased. If numaccept equais zero then the annealing process
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BASIC SIMULATED ANNEALING ALGORITHM FOR
GRAPH PARTITIONING

Input: Graph (V.E), positive integer K, positive integers ¢;, G5, ..., Ok.
Output: A feasible partition of V with small capacity.

begin
(Vi «... V) =init_state ( ), T := init_temperature ( );
numaccept := 1, numtemp = 0; l
while (numaccept > 0) and (numtemp < R) do
begin
numaccept := 0, numtemp := numtemp +1; '
fori:=1,2, .., MCLENGTH do move ( );
T = TFACTOR * T;
end
if for some i 1V0; then (V,, ..., Vi) = greedy_fix_up (Vy, ..., V)
end

procedure move ( )
begin
(V4 .... Vi) := random_neighbor (V,, ..., Vi)
A = cost (V, ..., Vi) - cost (V, ..., Vi)
if A <0 then (Vy, ..., Vg) := (V4 ..., V), numaccept := numaccept +1;
¢lse if randunit ( ) £ exp (— A/T)
then (Vy, ..., Vg) := (Vy, ..., V). numaccept := numaccept +1;
end

function randunit ( )
begin return (a random number uniformly distributed on the interval [0, 1))
end

Figure 5.2.1. The basic implementation of the penalty method for graph panitioning, where the
minimization is done by simulated annealing.
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1s assumed to be "frozen" and the simulation is stopped. Variable aumtemp stores the number of

umes T 1s decreased. If numtemp exceeds a number R then the simulation is also terminated.

Iruualization of the algorithm consists of initializing numtemp and numacccpi. and calling
1ar_stater) and init_temperature() Function init_state() retums a feasible partition of V where the
aancaling process can stant from. Function inir_temperature retums an initial value for T. The
retumed value is computed by randomly picking one hundred neighbors of an arbitrary feasible
paruton (V,, . . ., V). and, for all neighbors that have bigger cost than (Vy, . .., V), the sample
average A of the cost of a neighbor of (V,,...,Vg) minus the cost of (V,,...,Vg) is com-
puted. The temperature T that is retumed is such that exp(=A/T) = 0.4. This method of initializ-

ing the temperature value was also used by Aragon et al. {20] and Kirkpatrick et al. [1].

After the simulation of the annealing process the final partition (Vy, - - - ,Vg) computed may
be wnfeasible The function greedy_fix_up (V;, - - - ,Vi) is called and it retuns a feasible partition.
It does this by sequenually transferring nodes from subsets V, to subsets V;, such that Vil > o,

and |V,| < g, so that each transfer minimizes the increase in the capacity of the resulting partition.

We will now discuss the different implementations of the penalty function methods. For the
hardlimiter (HL) and quadratic (Q) penalty methods, the implementation used is the one in Figure
5.2.1. The implementation of the method of multipliers (MM) is shown in Figure 5.2.2. In this
implementation, the penalty parameters ¢; are constant and equal to ¢ and the augmented Lagran-
gian function is minimized J+1 times by simulated annealing. The first minimization is done by a
long simulated annealing run and the next J minimizations are done by runs. In between minimi-

zations the multiplier vector A is updated.

The implementation of the dynamic method of multipliers (DMM) is shown in Figure 5.2.3.
It 1s the same algorithm in Figure 5.2.1, excluding the additional lines enclosed in the two rectan-

gles. These additional lines and the two additional vanables Ah=(Ah; :i=1,2,..., K) and
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o METHOD OF MULTIPLIERS

‘ V. ..., V) =init_state ( ), T := init_temperature ( );

P fori:==12,,.., K,doA; :=0;

B numaccept := 1, numtemp := 0;

3 while numaccept > 0) and (numtemp < R) do

° begin
numaccept := 0, numtemp := numtemp +1;
forj:=1,2, .., MCLENGTH do move ( );
T := TFACTOR * T;

end
T := (TFACTOR)™™=mp7 « T;
forii=1,2,.., Jdo

o
‘1'-4

Tatu e
A B

-

) begin

.:"\Q T:=T;

.h::: fﬂj:= 1.2,..., KQ_QXJ+K’+c*(cJ—IVJI);
el

numaccept := 1, numtemp = (;
while (numaccept > 0) and (numtemp < R/J ) do
begin
numaccept := 0, numtemp := numtemp +1;
fort:=1,2, .., MCLENGTH do move ( );
T := TFACTOR * T;
end

-

O -,'{,?.‘.', % O

{008

end
if for some i, 1V l#0; then (V,, ..., Vg) = greedy_fix_up (Vy, ..., Vg)i
gnd
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Figure 5.2.2. The implementation of the method of multipliers.
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Zcount are used in maintaining A. Note that Ah/Z is the sample mean of 6~|V;| since the last

time A; was updated.

For the algorithm in Figure 5.2.3, Ah, is updated after each call to move( ). A§ remarked in
the previous section, this can be very time consuming if K is large. A more efficient method is to
update Ah; only when |V;| changes value. To accomplish this we have a global counter globcount
which is incremented immediately after every call to move( ), and, for each i, suchthat 1 £i < K
we have additional variables lastdiff; and lastcount;: lastdiff; equals o; — |V;| and lastcount; equals
the value of globcount when Ah; was updated last. Every time |V,| changes value or A, is to be
updated we increment Ah; by o; - |V;| + (globcount - lastcount; — 1)lastdiff;, set lastdiff, to
o, — |Vil, and set lastcount; to globcount.

Our experiments consisted of three cases: (n = 240, m = 300, K = 2, 6, =0, = 200), (n =
240, m = 300, K =2, ¢; = 160, 0, = 80), and (n = 160, m = 200, K = 4, 6, = 0, = G3 = G4 = 40).
For each case, ten graphs were randomly and independently generated where each graph in G(n,m)

was equally likely to be generated. Recall G(n,m) is the set of graphs with node set {1, 2,..., n)

and m edges. For each case and parameter value considered, each algorithm was executed once
for each of the ten random graphs. During these ten runs the average number of times T was
decremented (AVG#TDEC) and the average capacity of the final partition (AVGCAP) were
rccorded. The number of times T was decremented is related to the running time of the algorithm,
since the number of times T was decremented multiplied by MCLENGTH is equal to the length of

the annealing process simulated.

For all three cases, the average degree of the graph (equal to 2|E|/|V]) is 2.5 and we com-

pared the following penalty methods:

hardlimiter penalty method when y =1;

quadratic penalty method when ¢ = 100%"2 fori =0, 1, ..., 10;
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DYNAMIC METHOD OF MULTIPLIERS

begin

(V1 ..., V) = init_state ( ), T := init_temperature ( );
forii=1,2,.., KdoA; =0 Ah :=0;
Zcount := Z;

numaccept := 1, numtemp := 0;
while (numaccept > 0) and (numtemp < R) do
begin
numaccept := 0, numtemp := numtemp +1;
fori:=1,2,.., MCLENGTH do
begin

move ( )

.EQIJ = 1.2 9 sees dQAhJ :'—'Ahj"'cj— |VJ|;

Zcount := Zcount -1

if Zcount = O then

begin
IQ[] =1, .., Kdglj.=l)+CAh/Z, AhJ =0;
Zcount ;= Z;

end

end
T := TFACTOR * T;
end
if for some i |V;l#0; then (V,, ..., Vg) := greedy_fix_up (Vy, ..., Vi)

end

Figure 5.2.3. The implementation of the dynamic method of multipliers.
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method of multipliers when J =4 and ¢ = 107*®2 fori=0,1,...,10; _

dynamic method of multipliers when Z = (K-1){V| and c = 107*2 fori =0, 1, ..., 10.

X

o

For the hardlimiter penalty method, the quadratic penalty method, and the dynamic method of
multipliers, we let TFACTOR equal 0.9. However, we let TFACTOR equal 0.81 for the method
of multipliers, since it consists of multiple simulated annealing runs. The result was that the sum
of the lengths of the annealing processes simulated were roughly the same for all the penalty

methods. We will now discuss some of the details of each case.

Case 1 (n = 240, m = 300, K = 2, 6, = 6, = 120): In this case, the resulting partition is

5 259 X 48

‘l
»
{ required to be balanced. For all penalty methods, we ran all the algorithms with R equal to 250.

We also ran the algorithm for the hardlimiter penalty method for R equal to 50, so that the length

of the annealing process simulated would be roughly the same as for the other penalty methods.

(—~ =

.- The data are given in tables in Figure 5.2.4 and are plotted in graphs in Figure 5.2.5.

N

EN o

1:6 }S‘ Case 2 (n = 240, m = 300, K = 2, ¢, = 160, 6, = 80): In this case, the partition is required
o

€,

".- . *

¥ to be unbalanced. For all penalty methods, we ran all the algorithms with R equal to 250. We

e

also ran the algorithm for the hardlimiter penalty method with R equal to 40, so that the length of

the annealing processes simulated would be roughly the same as for the other penalty methods.

P

The data are given in tables in Figure 5.2.6 and plotted in graphs in Figure 5.2.7.

&1y

Case 3 (n =160, m = 200, K = 4, G, = Gy = 03 = G4 = 40):

Sw WX N

:Z E; In this case, the partitions should be balanced, but we have four sets to the partition rather
R (7 than two as in Case 1. For all penalty methods, we ran all the algorithms with R equal to 75. The
)

3?: & data are given in tables in Figure 5.2.8 and plotted in graphs in Figure 5.2.9.

L)

%

-
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For all three cases, the quality of solutions for the quadratic penalty method, the dynamic

method of multipliers, and the method of multipliers were dependent on the value of ¢c. Very small

. s
-

- -
-

values of ¢ lead to poor solutions, because the solutions found by simulated annealing were far
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AVGH#TDEC
Q MM DMM
69.5 61.6 40.2
59.2 52.3 432
54.3 53.6 68.5
43.6 55.4 60.5
52.3 57.7 56.9
45.7 50.9 47.0
347 43.7 35.4
273 33.6 27.1
26.3 23.5 25.7
19.5 27.1 20.4
18.2 24.7 18.8
AVGHTDEC
235.3
50.0

Figure 5.2.4. Results from computer experiments for Case 1 (n =240, m =300, K =2,06,=0; =
120). AVGCAP = the average capacity of the final partition and AVG#TDEC = the average
number of times T was decremented. Q = quadratic penalty method; MM = method of multipliers;
DMM = dynamic method of multipliers; and HL = hardlimiter penalty method.
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Case 1: AVGCAP

@ Q
- MM
1 -~ DMM

AVGCAP

ABALL. EEASAALLL SEN AL A AL e an

b BEUARS e
105 104 103 102 10! 10° 10!

Case 1: AVGA#TDEC

@ Q
- MM
1 = DMM

AVGSTDEC
8
']

20 4= S —

NS ver
105 104 103 102 107 109 10!

[

Figure 5§2.5. Graphs of results from computer experiments for Case 1 (n = 240, m = 300, K = 2,
G; = G, = 120). AVGCAP = the average capacity of the final partition and AVG#TDEC = the
average number of times T was decremented. Q = quadratic penalty method; MM = method of
multipliers; DMM = dynamic method of multipliers; and HL = hardlimiter penalty method.
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AVGCAP AVGH#TDEC

R log,oC Q MM DMM Q MM DMM
250 4.0 31.6 29.3 30.4 61.2 52.0 37.8
250 -3.5 31.1 28.9 30.3 58.7 51.5 42.8
250 -3.0 29.9 29.3 24.8 429 47.7 34.8
250 2.5 27.4 27.6 23.7 38.8 44.3 373
250 -2.0 27.6 26.5 24.7 29.6 39.6 34.6
250 -1.5 23.3 27.1 23.8 35.1 34.2 38.4
250 -1.0 24.5 26.8 24.2 33.7 38.8 30.9
250 -0.5 24.7 28.8 25.7 29.2 34.9 29.6
250 0.0 31.9 323 339 30.7 32.0 26.9
250 0.5 68.7 66.0 69.3 219 25.3 20.1
250 1.0 111.7 109.9 112.4 19.1 22.6 19.0

HL
R AVGCAP AVGH#TDEC
250 25.1 834
40 25.8 39.3

Figure 5.2.6. Results from computer experiments for Case 2 (n = 240, m = 300, K = 2, ¢, = 160,
o, = 80). AVGCAP = the average capacity of the final partition and AVGATDEC = the average
number of times T was decremented. Q = quadratic penalty method; MM = method of multipliers;
DMM = dynamic method of multipliers; and HL = hardlimiter penaity method.
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Case 2: AVGCAP

30 4

28 4

AVGCAP
tte
ge°

26 4

24 -

Y

Iy T Ty v
105 104 103 102 10! 109 10!

Case 2: AVG#TDEC
70

AVGSTDEC
2

tteé
ge°

109 104 103 102 10! 109 0!

Figure 5.2.7. Graphs of results from computer experiments for Case 2 (n = 240, m = 300, K = 2,
c, = 160, 6, = 80). AVGCAP = the average capacity of the final partition and AVG#TDEC = the
average number of times T was decremented. Q = quadratic penalty method; MM = method of
multipliers; DMM = dynamic method of multipliers; and HL = hardlimiter penalty method.
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g AVGCAP AVGHTDEC
B R log,oC QP ALM DALM QP ALM DALM
75 4.0 47.7 49.2 479 74.1 72.4 48.8
.:;';f 75 -3.5 48.8 473 45.6 71.5 63.1 424
1444 75 -3.0 45.7 45.7 42.0 68.9 66.5 60.1
ek 75 2.5 435 45.7 379 53.5 46.8 53.6
X 75 -2.0 40.7 41.5 38.1 52.2 57.9 53.6
e 75 -1.5 39.5 41.5 39.1 50.3 53.0 44.7
Lol 75 -1.0 39.7 39.2 37.8 42.5 41.1 32.5
RO 75 -0.5 39.9 41.5 41.3 25.9 34.1 26.7
o 75 0.0 4.6 437 46.1 28.5 28.7 25.1
v 75 0.5 94.4 86.0 91.0 215 27.3 22.0
- %, 75 1.0 132.3 129.9 1324 19.6 25.9 20.3
[)
’ i
i
J
iy HL
‘*5;‘* R AVGCAP AVGH#TDEC
@ ' 75 39.3 715
Lot
Y
_ ;
wed
;!'a
W Figure 5.2.8. Results from computer experiments for Case 3 (n = 160, m =200, K =4,0, =0, =
% O3 = G4 = 40). AVGCAP = the average capacity of the final parntition and AVG4TDEC = the
{:.' average number of times T was decremented. Q = quadratic penalty method; MM = method of
"::o,‘ multipliers; DMM = dynamic method of multipliers; and HL. = hardlimiter penalty method.
oy
D

XUy 97n ST 070 U By 00 TN Ty 17 15 By Vhg Sy 8y Ve 0 & AN
S ARG RGeS B B ey



95

Case 3: AVGCAP
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Figure 5.2.9. Results from computer experiments for Case 3 (n = 160, m = 200, K =4, 0, =0, =
03 = 64 = 40). AVGCAP = the average capacity of the final partition and AVG#TDEC = the
average number of times T was decremented. Q = quadratic penalty method; MM = method of
multipliers; DMM = dynamic method of multipliers; and HL = hardlimiter penalty method.
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from satisfying the equality constraints and the greedy fix-up algorithm did not produce near
optimal solutions. Very large values of ¢ lead to poor solutions, because the large quadratic term

in the augmented Lagrangian function restricted the movement of the annealing proceés.

For all three cases, the dynamic method of multipliers produced low-valued AVGCAP values
over the widest range of values of ¢ than the quadratic penalty method or the method of multi-
pliers. In Figure 5.2.5 note that when ¢ equaled 0.001 the dynamic method of multipliers produced
a smaller value of AVGCAP and a larger value of AVG#TDEC than the quadratic penalty method
or the method of multipliers. The implication is that there may be a quality of solution versus run-
ning time tradeoff in Case 1. However, there does not seem to be such a tradeoff in the other two

cases.

Note that the dynamic method of multipliers yields better solutions than the quadratic method
for small values of c, while the reverse is true for large values of ¢. This can partly be explained
by the fact that in the dynamic method of multipliers the linear term of the augmented Lagrangian
function behaves roughly like an extra quadratic term by the way it is updated. Hence, the
dynamic method of multipliers is like a quadratic penalty method but with a larger penalty parame-

ter.

A final observation is that the hardlimiter penalty method performed well when compared to
the other penalty methods. For Case 1, the AVGCAP value of the hardlimiter method, when R
equais 250, is smaller than the other penalty methods, and the AVGCAP value of the hardlimiter
method, when R equals 50, is within 4% of the smallest AVGCAP value of the other methods.
For Case 2, the AVGCAP value of the hardlimiter method, when R equals 250, is within 8% the
smallest AVGCAP value, and the AVGCAP value of the hardlimiter method, when R equals 40, is

within 11% of the best AVGCAP value. For Case 3, the AVGCAP value of the hardlimiter

penalty method is within 4% of the smallest AVGCAP value of the other penalty methods.




5 7
o ‘ Although the hardlimiter penalty method performs well over all cases, for certain values of ¢ the
dynamic method of multipliers produces better solutions for Cases 2 and 3.
EQ: We will digress to make a comment on the sensitivity of the quadratic penalty method, the
% method of multipliers, and the dynamic method of multipliers to the value of ¢ in our experiments.
’: The reason why ¢ should not be too small can be explained if we assume that the capacity of parti-
o,
ton '(V,, ..., Vg) is well approximated by (l—lzci [% ]z)m. which is the average capacity of
im
§’ (Vi,...,Vg over all graphs in G(n.m). Then the augmented Lagrangian function is well
4 '5 approximated by I'(g.g5, . . . .8x)
¥, LY K o K. lo; 2 )
hy =(1-Egi)m+i§h(-;-gon+53[-;-ga]n.
; where g; = |V;|/n. The Hessian matrix of T is (~2m+cn®)I, where 1 is the identity matrix. There-

fore, T is convex if (22_1;1 and concave if cs-2-'—;'-. In Figures 5.2.5, 5.2.7, and 5.2.9, note that as
n n

~w e
e .

parameter ¢ decreases, the quality of solutions found by the quadratic penalty method begins to

% o

degrade after ¢ crosses the value of 2—? (Z—T is equal to 0.01 for Cases 1 and 2 and is equal to
n n

0.016 for Case 3).
3 |
- 5.3. Conclusions
E In this chapter, we considered solving the equality constrained problem by simulated anneal-
. ing and penalty methods. In particular, we focused on the quadratic penalty method and adaptive
I.‘
b variations of it. Our concemn with the quadratic penalty method was that resulting solutions were
g sensitive to its penalty parameter values. Since simulated annealing is a very time consuming algo-
" rithm, finding a good penalty parameter value experimentally could be impractical.
o
Ly
[

b =, -"ﬁ*‘r\:’\ﬂ -‘\‘. . Ca.
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This leads us to investigate adaptive penalty methods that would perhaps be less sensitive to
parameter values. The two adaptive penalty methods we considered were based on the method of
multipliers, and required the minimization of an augmented Lagrangian function. However, the
multiplier vector of the function is dynamically and periodically adjusted. Of these two adaptive
penalty methods our experiments showed that the dynamic method of multipliers worked best and

produced low-valued solutions over a wider range of penalty parameter values than the quadratic

penalty method. We think further investigation of adaptive penalty methods should be done.
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CHAPTER 6

CONCLUSIONS

6.1. Summary of Thesis

This thesis consists of a collection of results, most of which concem the finite-time behavior

of simulated annealing.

In Chapters 2 and 3, we analyzed simulated annealing when it is applied to the matching
problem. In Chapter 2, we showed that in the worst case simulated annealing solves the problem
in average time that is at least exponential in the number of nodes of the graph if (a) the simulated
annealing algorithm is the basic simulated annealing algorithm in Subsection 2.2.1 or (b) if we res-
trict our attention to the constant-temperature schedules. An upper bound on the average time it
takes the basic simulated annealing algorithm of Subsection 2.2.1 to find a near maximum match-
ing is also given. If we only require the algorithm to find a matching of size at least a fixed frac-
tion of the size of the maximum matching, this upper bound is polynomial in the number of nodes
of the graph. An estimate on the average time the basic simulated annealing of Subsection 2.2.1
will solve the matching problem for a "typical" graph is given in Chapter 3. We also presented
computer simulation data that demonstrated that this estimate was reasonable. If we restrict our
attention to graphs that have at least as many edges as there are nodes, then the estimate is a poly-
nomial function of the number of nodes of the graph, which contrasts the results in Chapter 2 and

which is encouraging to proponents of simulated annealing.

Since there are efficient algorithms available to solve the matching problem [9], it is doubtful
that simulated annealing will be used on that problem in practice. However, our analysis seem to
be the first thorough theoretical analysis of the average time complexity of simulated annealing

applied to a nontrivial combinatorial optimization problem. Also, we can at least test our intuition
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. and experience against these results. For example, since simulated annealing is a simple heuristic,
I} we would not expect it to outperform more sophisticated methods in the worst case, and our
‘:I exponential average-time lower bounds compared with the O(V[V]|E|) time algorithm of [9] cer-
tainly supports this expectation.

g

:S In Chapter 4, we presented a collection of results. The template method and some examples

A of its use were given in Section 4.2, and the threshold random search algorithm was given in Sec-

,' tion 4.3. In Section 4.4, we presented conditions which imply that no monotone decreasing tem-
E' perature schedule is optimal.

__(_ The use of adaptive penalty methods to solve equality constrained problems by simulated
\ annealing was investigated in Chapter S. One of these methods (the dynamic method of multi-
>

= pliers) was shown, through experiments, to provide low-valued solutions over a wider range of
.,:.j parameter values than the static penalty method (quadratic penalty method) we considered. We
] '-,, believe further study of adaptive penalty methods should be done.

A

, 6.2. Directions for Future Research on Simulated Annealing

\':E One direction for future research is to extend the results of Section 2.4. Rather than restrict-
: ing ourselves to constant temperature schedules we may consider monotone decreasing temperature
schedules. Since we are relaxing the constraints for the temperature schedules, we will have to
% consider a smaller set of transition probability matrices than the set R(G) of Section 2.4 in order to
maintain the same lower bound for .

‘it

E;.?, A second direction for future research is to use a "physicist’s” approach to analyze the
2:2 behavior of simulated annealing for some NP-Complete problem. What we mean by a physicist's
::':: approach is to make reasonable assumptions to model the annealing process by a process that can
SE ¢ be analyzed. Then experiments should be used to check the accuracy of the model. An example
!y

t of this type of analysis, but on a known polynomial-time problem, was done in Chapter 3.
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Consider the system (S, ¢, R), where S is a set of states, ¢ is a cost functionon S, and R is a
probability transition matrix over S. Let (X: k 2 0) be an annealing on the system (S, ¢, R) with
temperature schedule T. Most theoretical research is concemed with determining a good tempera-
ture schedule. However, it may be that the performance of simulated annealing is more dependent
on the choice of R. A third direction for future research is to study how the choice of R affects
the performance of simulated annealing. A related direction for future research is to come up with
ways to systematically modify R that may improve the performance of the simulated annealing
algorithm. For example, using R? rather than R may be preferable in certain cases. The template

method may be used to illustrate these cases.

. "\*}

. W
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